

Model Building for Internet of Things Based System for Monitoring Healthcare

Pavan Kumar Tummala¹*, Srikanth Vemuru¹, Rajeswari Setti², Kiranmayi Varma Lanke³, Sai Vardhan Myneni³, Mahathi Gummavajjala³, Kusuma Naredla³ and Lakshmi Saranya Medida³

¹Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India

²Department of Computer Science and Engineering, VR Siddhartha Engineering College, Vijayawada, Andhra Pradesh, India

³Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India

Abstract: Internet of things is becoming a big part of almost every sector and Obstetrics/Gynecology is no exception. IoT serving major roles form automating drudgery and tasks in medical practice to manage patients and medical resources. This IoT provides the outputs immediately but cannot completely depend on the decision, human interaction is necessary. It sure does as environment around mom is good, so it leads to better health of both mom and child. The importance of health care during pregnancy is emphasized because proper health care increases the probability of a successful pregnancy, a successful infant. Maintain healthy environment, regular monitoring of the vital parameters of fetus and women, that should eventually decrease the mortality rate. Molecular biology researchers would have sufficient expertise or resources to manually create and maintain relation between findings in their field, owing to the rapid growth of data both in molecular biology and in virtually every clinical medicine domain. The Internet of Things (IoT), network of interconnected medical devices is an application for health-related uses, collection of data, processing for testing and monitoring. This review article aims about how IoT can track and allows healthcare persons to be more responsive and interact with patients which provides a basis to interpret new clinical and basic research findings in the areas of cloning, gene transfer and targeting, the application of genetic medicine to clinical conditions, ethics, government regulation, genomics, and biotechnology and bioinformatics.

Keywords: Internet of Things, Bioinformatics, Data collection, IoT Sensors, Healthcare, Medical.

***Corresponding Author**

Pavan Kumar Tummala* , Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India

Received On 28 October 2020

Revised On 30 November 2020

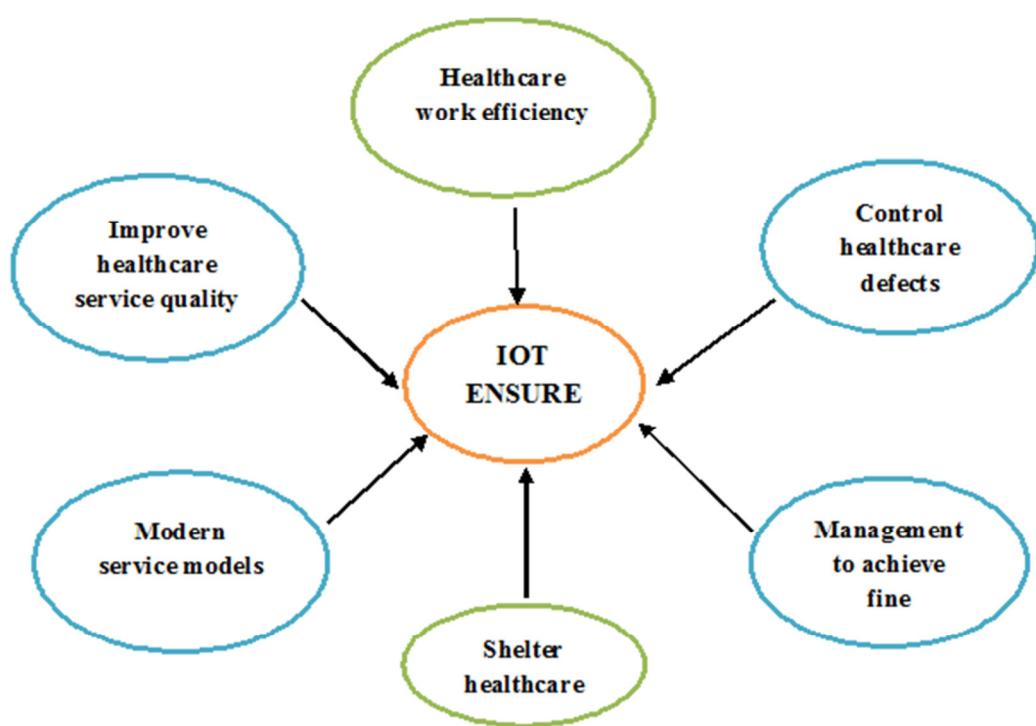
Accepted On 03 December 2020

Published On 09 December 2020

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Pavan Kumar Tummala*, Srikanth Vemuru, Rajeswari Setti, Kiranmayi Varma Lanke, Sai Vardhan Myneni, Mahathi Gummavajjala, Kusuma Naredla and Lakshmi Saranya Medida , Model building for Internet of Things based supervision system for monitoring maternal stress during delivery..(2020).Int. J. Life Sci. Pharma Res.10(5), <http://dx.doi.org/10.22376/ijpbs/ijlpr.2020.10.5.L145-149>

This article is under the CC BY- NC-ND Licence (<https://creativecommons.org/licenses/by-nc-nd/4.0/>)



Copyright @ International Journal of Life Science and Pharma Research, available at www.ijlpr.com

I. INTRODUCTION

Ever since the structure of DNA was unraveled in 1953, molecular biology has witnessed tremendous advances. With the increase in our ability to manipulate biomolecular sequences, a huge amount of data has been and is being generated. One of the key goals of the global health community is to prevent early infant mortality¹. Reducing child mortality requires a wide range of interventions that improve healthcare quality for the whole family before pregnancy and a healthy environment². With the increasing growth of IT-based technology such as IoT and cloud computing³, low-cost healthcare facilities and their support⁴, centralized management can be efficiently managed and public health monitoring can be achieved⁵. Growing attention has been paid to combining IoT and healthcare in both the academic and business environments, an increased understanding of the challenges and opportunities associated with IoT-based healthcare systems is needed⁶. Rapid growth of state-of-the-art technology has revolutionized the agricultural and medical sector to provide a varied population with emergency, reliable and economical facilities for safety⁷. So, we explore here in this article about how data collected from several devices were analyzed and visualized remotely on the application⁸. Social activities for stimulating cognitive abilities to develop educational games dedicated to the stimulation of cognitive disabilities like mental retardation⁹. There is an urgent call for developing efficient strategies which could reduce healthcare costs and meet the demand of older people affected by these chronic neurological diseases at affordable cost using IoT¹⁰. Health care information was sent to pregnant women's devices via wireless sensors like Bluetooth. Wearable devices are now expanding clinical safety monitoring capabilities and have tremendous potential to boost early detection of complications in pregnant

conditions¹¹. One of the central goals in biological sciences is to develop predictive models for the analysis and visualization of information. However, the analysis and visualization of biological data patterns have traditionally been approached as independent problems¹². Until now, biological data analysis has emphasized the automation aspects of tools and relatively little attention has been given to the integration and visualization of information and models. Moreover, given the vast amounts of data generated by high-throughput technologies, there is a risk of identifying spurious associations between genes and functional properties owing to a lack of an adequate understanding of these data and analysis tools¹³. By blending physical and digital realms, the Internet of Things (IoT) vastly expands the reach of information technology. The myriad possibilities that arise from the ability to monitor and control things in the physical world electronically have inspired a surge of innovation and enthusiasm. The sweeping changes that IoT can bring to how companies manage physical assets, how consumers attend to their health and fitness¹⁴. Two types of IoT technology applications fall under the human setting. The first category is health and fitness. The second set of human productivity involves using IoT technology to improve performance in the workplace¹⁵. IoT has potential for transformative change in human health. Using connected devices to continuously monitor patients as they live their lives—particularly those with chronic conditions such as diabetes—the Internet of Things can improve patient adherence to prescribed therapies, avoid hospitalizations (and post-hospitalization complications), and improve the quality of life for hundreds of millions of patients¹⁶. Wearable devices offer several exciting new possibilities for improving clinical surveillance, diagnosis, and pregnancy safety management beyond conventional care, as shown in figure 1.

Fig 1: Applications Of IoT Ensure The Enhancement Of Clinical Practices.

1.1 MODEL BUILDING FOR INFANT SUPERVISING SYSTEM

1.1.1 USE CASE

Sudden infant death syndrome (SIDS), according to the US census, the worldwide average of infant mortality rate is 90, that means 90 infants die per 1000 live births within a one-year period after birth. The US death rate of infants has increased in recent times due to SIDS. It is one of the leading causes of infant mortality rate. The leading causes are birth defects, preterm birth and maternal complications of pregnancy¹⁷.

1.1.2 LEAD-IN

We want to implement various sensors that give the instructions directly to the parents and the clinicians from the infants, by this the death rate could be decreased to some extent. So, for that we want to implement these sensors using this IoT (Internet of Things) - MQ2 Sensors (CO₂ indicator sensor), Temperature Sensor (temperature recording), Humidity sensors (check dry conditions of baby), Heartbeat sensor (beats per minute), accelerometer (acceleration) for biomedical applications¹⁸.

1.1.3 DATA PREPARATION

For this purpose of this experiment, let's consider only two categories for each sensor: normal and abnormal output. Each sensor was connected through IOT web technologies, we can easily know every action of an infant through this IOT network without devices and take an immediate action towards the infant. When an infant is in a dangerous situation it creates audible alarms to warn the parent¹⁹.

1.1.4 MODEL BUILDING

The outputs of the sensors indicating the temperature, humidity and oxygen concentration of the incubator internal environment in varied living cells²⁰ are the inputs of the Artificial Neural Networks, which defines the appropriate case and decides the correct response based on the previous training.

1.1.5 BIO TOOL

ZigBee devices also transfer information over long distances by transmitting data through an intermediate machine in a mesh configuration²¹. ZigBee works in the commercial, research and medical radio bands in drugs and biopharmaceuticals²² as shown in figure 2.

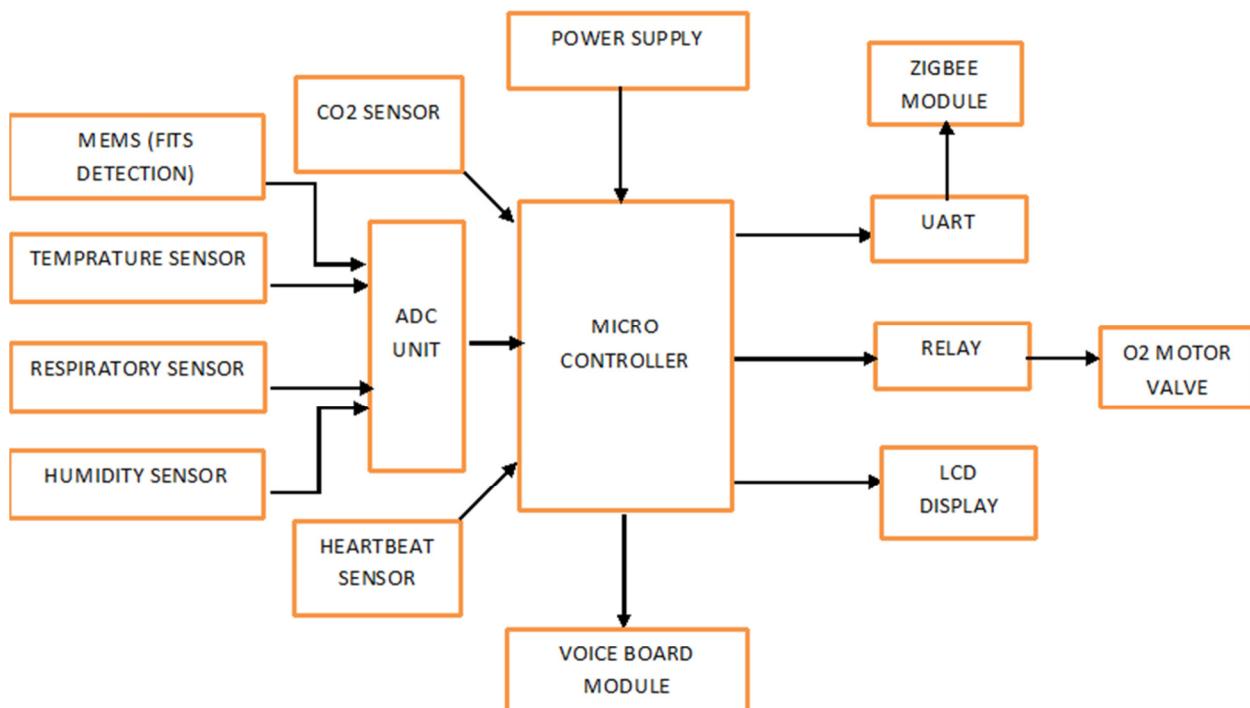


Fig 2: Block diagram of the process for model building for infant supervising system

2. IOT SENSORS

Here IOT technology based PWHCS (Pregnant Woman Health Care System) is used to monitor the condition of the pregnant women inside hospital and outside and make decisions timely by the clinicians, especially for rural underserved populations, device have advantage of being able to synthesize specific pregnant women data, do multiple evaluations, and send results to gynecologists, physician speedily anytime anywhere. The program will help to

enhance the tracking of the current status of pregnant women; it can create alerts to ensure that the scheduled activities are not completed²³.

2.1 TYPES

Different types of sensors are developed from this IOT these allows the development of a new generation of constant health monitoring for infants and mother. We use sensors like wearable sensors, wireless communication and power

supply technology, Temperature sensors, Heart rate sensors, Accelerometer. Healthcare information sent through wireless sensors with Bluetooth to the pregnant women device (Gateway). Wearable apps are already widening the capabilities of clinical safety surveillance and have a major potential to enhance early detection of pregnancy complications. Some of the wearable sensors, mobile health innovations are present exciting new opportunities to enhance the clinical monitoring, diagnosis and management of pregnancy health²⁴.

3. WEARABLE SENSOR

Wearable sensor technologies produce large scale, multi-dimensional datasets that can be used to classify lifestyle, environmental and behavioral risk factors in the sub-clinical process of adverse pregnancy outcomes. Here we are providing a health care solution that combines web app and CC3200 techniques in a wireless sensor network to monitor the health condition of pregnant women. A specialist who stays nearby can examine and observe the health condition of the pregnant women and can react with effective health care services to save the lives of both the women and infant in an emergency. The sensors incorporated measures the body temperature, pressure, pulse rate which is transferred to micro controller CC3200, which has an inbuilt WIFI and ADC module, so that the patients' health condition can be monitored by the doctors from anywhere at any part of time with the help of IP address link generated by the cloud data. At any point of emergency an alarm will be generated both to the doctor and the patient relation who can react and help to save the life of pregnant women²⁵.

4. ADXL SENSOR

Fetal movement can currently only be quantified using ultrasound or MRI scanning. So, for this accelerometer is implemented. The accelerometer sensor is placed in abdominal wall (limb) of fetus and a threshold signaling processing method to identify the acceleration and fetal movements. The use of the (ADXL335) accelerometer sensor on the mother's abdominal wall is an important development in the automated non-invasive detection of fetal movements. This system is highly sensitive even for small movements and light weight. This is a preferable home monitoring device. Fetal hypoxia can be measured using this accelerometer as it counts the fetal movements (kicking) and estimate the situation of the infant in the womb. Regular

9. REFERENCES

1. Tan X, Zhang Y, Shao H. Healthy China 2030, a breakthrough for improving health. *Glob Health Promot.* 2019 Dec;26(4):96-9. doi: 10.1177/175975917743533. PMID 29297762.
2. Firoz T, McCaw-Binns A, Filippi V, Magee LA, Costa ML, Cecatti JG, Barreix M, Adanu R, Chou D, Say L, members of the WHO Maternal Morbidity Working Group (MMWG). A framework for healthcare interventions to address maternal morbidity. *Int J Gynecol Obstet.* 2018 May;141(Suppl 1):61-8. doi: 10.1002/ijgo.12469, PMID 29851114, PMCID PMC6001624.
3. Srinivas M, Pavan Kumar T, Sai Vivek U, Rao BN, Avinash R, A. Exploratory study for data visualization

monitoring of fetus and women in rural area, eventually the infant mortality gets reduced²⁶.

5. ALLOMOM AND ALLOBABY

Jewelry is that every woman loves to wear, then how about monitoring the health of a person using it? Save Mom is a conceptualized portable kit that constantly monitors and tracks the health of a pregnant women. Jewelry such as bracelets or necklaces contains colorful beads with IoT enabled sensors which tracks and analysis the condition of the pregnant women and record every data including calories burn, heart rate etc. Based on the observation it collects the data and sends to the device and remedies the women about the parental care to be taken. All the data is transformed to cloud using women's phone via Bluetooth²⁷.

6. CONCLUSION

Digitization of data, including health data (known as the Internet of Things-IoT in Healthcare) and its use in healthcare delivery, has been rising increasingly worldwide. The study article offers an overview of the worldwide emergence of IoT in healthcare, Artificial Intelligence is becoming a major part of almost every industry and it's no exception to obstetrics. AI performing major roles from the automation of work and tasks for handling patients and medical services in medical practice. This AI provides the outputs immediately but cannot depend entirely on the artificial intelligence decision, human intervention is required. Sure, it does as mom's atmosphere is healthy, and it contributes to better mom and child safety. It stresses because proper health care increases safety of a healthy baby. Maintain a safe climate, monitor fetal and female vital parameters regularly, which will gradually decrease mortality rate.

7. AUTHORS' CONTRIBUTION STATEMENT

Pavan Kumar Tummala and Srikanth Vemuru has taken the responsibility in the conception and idea of the study. Rajeswari Setti and Lakshmi Saranya Medida contributed substantially in compiling literature sources and drafting the manuscript. Kusuma Naredla and Mahathi Gummavajjala has provided critical revision of the article for important intellectual content. Kiranmayi Varma Lanke and Sai Vardhan Myneni has checked the references. All authors have given final approval of the version to be published

8. CONFLICT OF INTEREST

Conflict of interest declared none.

- on internet of things. *J Adv Res Dyn Syst.* 2020;12:2286-97.
4. Katragadda T, Srinivas M, Prakash KB, Pavan Kumar T. Heart disease diagnosis using ANN, RNN and CNN. *Int J Adv Sci Technol.* 2020;29:2232-9.
5. Vemuri PK, Kunta A, Challagulla R, Bodiga S, Veeravilli S, Bodiga VL, Rao KRSS. Artificial intelligence and internet of medical things based health-care system for real-time maternal stress – strategies to reduce maternal mortality rate. *Drug Invent Today.* 2020;13:1126-9.
6. Santana-Mancilla PC, Anido-Rifón LE, Contreras-Castillo J, Buenrostro-Mariscal R. Heuristic Evaluation of an IoMT System for Remote Health Monitoring in

- Senior Care. *Int J Environ Res Public Health.* 2020;17(5).
doi: 10.3390/ijerph17051586. PMID 32121476.
7. Pavan Kumar T, Kumar Lala SK, Sravani B, Sandeep A. Internet of things survey on crop field smart irrigation automation using IOT. *Int J Eng Technol.* 2018;7(3):503-6.
doi: 10.14419/ijet.v7i2.8.10494.
8. Setti R, Davuluri V, Mulpuru V, Tummala PK, Vemuru S. Computational approaches for semiquantitative data analysis and validation. *Drug Invent Today.* 2020;14:23-6.
9. Maddhuri S, Vemuri PK, Tatineni J, Puppala J, Bodiga VL. Association of Calcineurin B (PPP3R1) functional gene polymorphism in South Indian children with idiopathic mental retardation. *Rese Jour of Pharm and Technol.* 2020;13(2):599-603.
doi: 10.5958/0974-360X.2020.00113.4.
10. Chanda C, Surepalli S. Dopaminergic dysfunction in neuropsychiatric disorders. Pathophysiology, current therapeutics, and future perspectives. *nin.* 2019;14(1-2):39-47.
doi: 10.5114/nan.2019.87724.
11. Mayer M, Baeumner AJ. A megatrend challenging analytical chemistry: biosensor and chemosensor concepts ready for the internet of things. *Chem Rev.* 2019 Jul 10;119(13):7996-8027.
doi: 10.1021/acs.chemrev.8b00719. PMID 31070892.
12. Slonim DK. From patterns to pathways: gene expression data analysis comes of age. *Nat Genet.* 2002 Dec;32:Suppl:502-8.
doi: 10.1038/ng1033, PMID 12454645.
13. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. *Nat Rev Genet.* 2015 Feb;16(2):85-97.
doi: 10.1038/nrg3868. PMID 25582081.
14. Brown EA. The Fitbit Fault line: two proposals to protect health and fitness data at work. *Yale J Health Policy Law Eth.* 2016 Winter;16(1):1-49. PMID 27363257.
15. Gao L, Bai X. A unified perspective on the factors influencing consumer acceptance of internet of things technology. *Asia Pac Jnl of Mrkting & Log.* 2014 Apr 8;26(2):211-31.
doi: 10.1108/APJML-06-2013-0061.
16. Garnica P. Transition of care for patients with diabetes. *Curr Diabetes Rev.* 2017;13(3):263-79.
doi: 10.2174/1573399813666161123104407, PMID 27881054.
17. Nour B, Sharif K, Li F, Biswas S, Mounla H, Guizani M, Wang Y. A survey of Internet of Things communication using ICN: A use case perspective. *Comput Commun.* 2019;142-143:95-123.
doi: 10.1016/j.comcom.2019.05.010.
17. Yao S, Swetha P, Zhu Y. Nanomaterial-enabled wearable sensors for healthcare. *Adv Healthc Mater.* 2018 Jan;7(1).
doi: 10.1002/adhm.201700889. PMID 29193793.
18. Mallick SP, Suman DK, Singh BN, Srivastava P, Siddiqui N, Yella VR, Madhual A, Vemuri PK. Strategies toward development of biodegradable hydrogels for biomedical applications. *Polymer-Plastics Technology and Materials.* 2020;59(9):911-27.
doi: 10.1080/25740881.2020.1719135.
19. Bodiga S, Vemuri PK, Bodiga VL. Low Ctrlp, due to lack of Scolp results in lowered cisplatin uptake and mediates insensitivity of rho0 yeast to cisplatin. *J Inorg Biochem.* 2018 Oct;187:14-24.
doi: 10.1016/j.jinorgbio.2018.07.003. PMID 30041154.
20. Vani KK. Zigbee Sensor Network Integrated with 4G Using Tree Routing for IoT Applications. *IJIRCCE* 2015;03(1):393-7.
doi: 10.15680/ijircce.2015.0301038.
21. Vemuri PK, Chowdary Lavu S, Dronavalli N, Nunna V, Nannapaneni S, Bodiga VL. Assessment of clinical-pharmacological activities of drugs and biopharmaceuticals. *Drug Invent Today.* 2020;13(1):74-9.
22. Yang G, Xie L, Mäntysalo M, Zhou X, Pang Z, Da Xu L, Kao-Walter S, Chen Q, Zheng LR. A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box. *IEEE transactions on industrial informatics.* 2014 Feb 24;10(4):2180-91.
23. Amala SS, Mythili S. IOT Based Health Care Monitoring System For Rural Pregnant Women. *International Journal of Pure and Applied Mathematics.* 2018;119(15):837-43.
24. Runkle J, Sugg M, Boase D, Galvin SL, Coulson C. Use of wearable sensors for pregnancy health and environmental monitoring: Descriptive findings from the perspective of patients and providers. *Digital health.* 2019 Feb;5:2055207619828220.
25. Gigerenzer G, Gaissmaier W, Kurz-Milcke E, Schwartz LM, Woloshin S. Helping doctors and patients make sense of health statistics. *Psychological science in the public interest.* 2007 Nov;8(2):53-96.
26. McDonagh M. Is antenatal care effective in reducing maternal morbidity and mortality?. *Health policy and planning.* 1996 Mar 1;11(1):1-5.
27. Johnson SA. "Maternal devices", social media and the self-management of pregnancy, mothering and child health. *Societies.* 2014 Jun;4(2):330-50.