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1. INTRODUCTION

During the last few decennials, the prevalence of microbial
infections has increased dramatically. Perpetual distribution
of antimicrobial drugs in treating infections has led to the
emergence of resistance among the sundry strains of
microorganisms '. Multidrug resistance (MDR) is defined as
the resistance of a microorganism to multiple drugs at a
time?®. Bacteria usually overcome the antimicrobial activity of
antibiotics using three related mechanisms namely resistance,
persistence and tolerance®. Multidrug resistance in bacteria
occurs by mechanisms such as presence of drug resistant
plasmid which can undergo horizontal transmission from a
resistant bacterium to sensitive one rendering it resistant,
presence of transposons and antibiotic resistance cassettes
are some other contributing factors to the present medical
emergency. Bacteria of certain genera exhibit multi drug
resistance due to the presence of multidrug efflux pumps
which can pump out multiple drugs non-specifically from the
cell> Some bacteria are termed as “Persisters” as they are
non-growing, metabolically inactive and dormant and found
to play a role in recurrent or chronic infections as they can
survive both antibiotic interventions and host immune
response, as the drug pressure is removed, they can revert
back to its wild type conferring antibiotic susceptibility®.
Resistant phenotype is exhibited by tolerant bacteria and
thus, tolerance is defined as the ability to survive in the
conditions of transient exposure to high concentrations of
antibiotics. The World Health Organization has studied these
and concluded that resistant microorganisms such as
bacteria, fungi, viruses, and parasites can resist antimicrobial
drugs leading to ineffective treatment resulting in
sedulousness and spreading of infections. In the year of 2017,
two important studies were done related to the evolution of
resistance by tolerant bacteria and persisters. Studies
revealed that after long exposure of Mycobacterium
tuberculosis to Rifampicin the persisters basically results from
source of de novo resistant mutants whereas generation of
increased tolerance results from induced mutation in
Escherichia coli population after intermittent exposure of
Ampicillin. In the year of 2019 a strong correlation between
persister and probability of resistance development in the
laboratory isolates of Escherichia coli. Many antibiotics are
tested upon the clinical isolates and all led to a common
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conclusion strongly suggesting a link between persistence and
tolerance to antibiotics and evolution of resistance to these
antibiotics (Table 2). Currently many evidences are there
which suggests that many bacteria bear the ability to live
inside some cells like macrophages and formation of biofilm
are associated with persistent infection. Clinical isolates
responsible for chronic infections such as Pseudomonas
aeruginosa, and uro pathogenic Escherichia coli exposed to a
long-term antibiotic pressure may result in persistent
infection with respect to those responsible for acute
infection. As discussed previously persisters results from
mutation and studies have revealed the presence of hip A
mutation in Escherichia coli associated with persistent urinary
tract infection and importance of hipA7 mutation resulting in
mersister formation in vitro. It was determined by various
research that a bacterium exposed to high concentration of
antibiotic results in the development of Persisters while
exposing the same microorganism to low concentration of
antibiotics results in development of resistance. Thus, the
present condition demands a better therapeutic intervention
to overcome multi drug resistance’. The review aims at
describe the alternative approaches to overcome the threat,
application of Phage therapy, Nanotechnology and various
Nano formulations, CRISPR-Cas system (figurel) and
antimicrobial peptides were highlighted with their recent
advancements affecting biofilm formation by inhibiting
quorum sensing has been elaborated in details. By studying
many cases, the World Health Organization has prepared a
report that shows varying rates of resistance in different
bacterial species (Table 1). Antimicrobial resistance is a
threatening phenomenon associated with high mortality and
medical costs and has significance in the efficacy of
antimicrobial agents. The ecumenical trade and tourism are
expanding continuously leading to the incremented potential
of MDR to spread worldwide, also the decrease in export
and import of sundry products which directly affects the
economy of developing countries *>'°. To combat this deadly
effect, the government takes initiative to conduct many
programs to optimize antimicrobial therapy, minimize
treatment-cognate cost, ameliorate clinical outcomes and
safety, and minimize or stabilize MDR '". Also, for better-
combating purposes, many efficient tools have been designed
to combat this, including Phage therapy, Nanotechnology,
CRISPR-Cas system as described in this review.

I.I  Technological Tools To Combat Multidrug Resistant Bacteria

Following Table | and Table 2 gave an insight to various Multi Drug Resistant Bacteria and their mechanism of Resistance.

Table 1. Common MDR bacterial species along with their respective diseases

12-15

Name of MDR bacterial species

Drugs resistant to

Diseases

Staphylococcus aureus Methicillin

Skin related diseases cause wound
and bloodstream infections.

Streptococcus pneumoniae Penicillin

Bloodstream infections, infections in
the middle ear.

Mycobacterium tuberculosis

Isoniazid, Rifampicin, and Fluoroquinolone

Pneumonia, urinary tract infections,
meningitis.

Klebsiella pneumoniae

Carbapenems and Cephalosporins

Bloodstream infections.

Escherichia coli

Fluoroquinolones and Cephalosporins

Urinary tract infections.

Sulphonamides, Penicillin, Tetracyclines,

Neisseria gonorrhoeae

Macrolides, Fluoroquinolones, and early

Gonorrhoea

generation Cephalosporins

Table highlighting Multi Drug Resistant Bacteria
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Fig I: Technological tools to combat Multidrug Resistant Bacteria.
More than one tool can be used.

Table 2. Mechanism of Resistance to common antibiotics

12-17

Class of Examples from the class of Modes of Resistance
Antibiotics Antibiotics

lact Penicillins, Cephal in and . .
Entai:)ica;cs Me:rl:::blancstamep alosporin an B lactamase, hydrolysis, degrading enzymes

Neomycin, Paromycin,
Ribostamycin, Amikacin,
Gentamycin

Aminoglycosides

Ribosomal mutation, Ribosomal modification by Methyltransferases, A-
G modifying enzymes, cell membrane modification, Efflux pumps.

Limecycline, Clomocycline,
Minocycline, Methacycline,
Tigecycline

Tetracyclines

Ribosomal binding site mutation, Ara C transcriptional activators for
development
Tetracycline,

of resistance, Lon Protease, Intrinsic efflux of

Josamycin, Midecamycin, Ribosomal methylation, Antibiotic efflux, Target mutation, Drug
Macrolides Miocamycin, Rokitamyin, and modification,
Spiramycin
Van A and Van B and 9 resistant operons have been identified,
Glycopeptides Vancomycin, Teicoplanin morphological changes in cell wall synthesis, thickening of cell wall,
reduce autolysis and change in content of Teichoic acid.
Alteration in target enzyme, Altered Drug Permeation, Alternate
Quinolones Norfloxacin, Ofloxacin permeation of drug, Plasmid mediated Quinolone enzyme, Qnr

plasmids, Acetylation by AAC(6')-Ib-cr

Chromosomal Sul Resistance like mutation in dhps gene, plasmid borne

Sulfonamides Sulfamethoxazole

DHFR (Dihydrofolate reductase) resistance, resistance by horizontal

gene transfer, Cassette mediated resistance.

Table explaining the mechanism of resistance to common Antibiotics

I.1.1 Phage Therapy As A Promising Agent To Combat

Multidrug-Resistant Bacteria

Bacteriophages are viruses composed of DNA or RNA and
viral proteins and vary in their genetic diversity and
complexity which infect bacteria using different mechanisms.
They are pervasive, present in large concentrations in
environmental sources like the sea, marsh, sewage '8
Wherever bacteria are present in high quantities, they
constitute the next layer of the human microbiota, infecting
normal microflora of the human digestive tract and other
niches. Bacteriophages can be lysogenic or lytic '°. Lysogenic
phages can integrated into the chromosome of the bacterial
cell. Lytic phages infect the bacterial cell by attachment to
particular receptors, replicate and assemble in the cellular
cytoplasm, lyse the cells and release their offspring, which can

further infect additional targeted bacteria. From the
perspective of antibacterial agents, bacteriophages can be
easily differentiated from different characteristic features
including the production of Virolysin, antimicrobial peptide
encoding, distributing system for genes encoding
antimicrobial agents, causing infection to sensitive bacteria in
the form of a living phage 2. Various Phages and their mode
of action against Multi-Drug Resistant Bacteria is given in
Table 3.

1.1.2 Therapy By Using Virolysin
A significant type of bacterial cell wall hydrolases are
Virolysins that helps to release phages through the

degradation of peptidoglycan in the bacterial cell wall.
Virolysins are encoded by the Lytic double-stranded phages
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as the final stages of the phage lytic cycle *'. Virolysins

performs the bacterial cell wall hydrolysis mechanism in two
steps: The first step comprises the proper binding to the
specific sites on the bacterial cell wall followed by the second
step which comprise Streptococcus pneumoniae, Staphylococcus
aureus, Bacillus anthracis. Thus, this the has very high potential
in overcoming Multi Drug Resistance as immunogenicity has

1.1.3 Therapy By Using Phage-Encoded Antimicrobial
Peptides

Two types of antimicrobial peptides such as lytic factors and
phage tailed complexes are encoded by bacteriophages. The
former functions as an inducer that induces bacteriolysis at a
particular time. Various lytic factors are there, such as E lytic
factor and L lytic factor encoded by ¢X174 and MS2/GA classes
of RNA phages respectively. The latter works through scanning
of specific receptors on the bacterial cell surface, once they
identify gets penetrate through the outer membrane, resulting in
lysis of peptidoglycan followed by successful incorporation of the
phage genome inside the bacterial cell. The tail of bacteriophage
T4 283! serves as the best example. Further, research is still
needed in this area 3234,

1.1.4 Phages Serving As A Therapy Delivery System

Significant viral delivery systems are developed nowadays for the
insertion of the proper genome to the target cells 35. One such
efficient delivery system consists of phages that deliver genes
encoding antimicrobials into target bacterial cells 3637. Hence,
this

I.1.5 Combating Therapy Using Living Phages

All phages are not appropriate for phage therapy. Lytic
phages are preferred as compared to the lysogenic phages
since lytic phages are capable of rapidly infecting their hosts
followed by fast replication which results in the production of
a lot of progeny phage cells which lyse the bacterial cells. A
survey was conducted to see the efficacy of phage therapy
with a suppurative bacterial infection on 370 cases in which
positive therapeutic results were obtained in 342 cases,
confirming the efficacy of bacteriophages in the treatment of
septic infection, caused by Staphylococci, Escherichia, Klebsiella,
Proteus™.

Microbiology

least effect in its efficacy. Various studies reveal that the
development of enzyme-resistant strains of pathogenic
bacteria gets inhibited a promising therapeutic option for
many pathogenic multidrug resistant bacteria such as:
Streptococcus  process delivers  antimicrobial genes into
intracellular bacterial pathogenic cells 38.

1.1.6 Alteration Of Biofilm Formation

Drug resistance in Bacteria is sometimes enhanced due to
the presence of Biofilm formation. Thick biofilm allows lesser
penetration of the antibiotics rendering the bacteria resistant
to it. However, Bacteriophage can express certain enzymes
like EPS depolymerase on the surface of the capsid that can
degrade extracellular polymeric surface reducing the extent
of surface colonization allowing the phage to access the
bacteria associated with the EPS matrix. Complete removal
of bacteria by biofilm inhibition is rare and usually bacteria
are regrown after removal of antibiotic treatment. Evidence
revealed phage treatment has resulted in complete removal
of biofilms from various bacteria namely Pseudomonas
aeruginosa, Staphylococcus ~ epidermidis  and Listeria
monocytogenes®.

1.1.7 Phage Cocktails

Phage cocktail preparation can be an alternative strategy to
combat Multi Drug Resistant Bacteria however, due to the
huge diversity of bacteriophage, designing a phage cocktail for
optimal effect is more complicated than going for
combinatorial treatment of antibiotics. Success of the phage
therapy depends upon correct composition of Phage
cocktails. The most important fact needs to be resolved is
the selection of standardized cocktail or customized phage
cocktail for the Phage Therapy. Customizing phage cocktails
to each type of infection is time consuming whereas taking
different spectrum into account standard phage cocktails
with constancy in the type of phages may not bring out
optimal clinical results due to non-specificity of phages to
bacterial isolates. Novel approaches for Phage cocktail design
consist of phages which act on the virulence factors reducing
them making bacteria sensitive to the lytic phages present in
the cocktail®.

Table 3. Major phages under Experimental studies and their mode of action

40-41

Phages Types of Resistant Bacteria Outcomes of Experimental Study
DA392 Pseudomonas aeruginosa resistant to Mortality reduced in animals treated with bacterial specific virulent
Imipenem phage strain
LS2a Drug resistant strain of Staphylococcus Abscess formation inhibited in Rabbit when phage was
aureus simultaneously inoculated Staphylococcus aureus
PS5 Multi Drug Resistant Pseudomonas Deep wound infection was treated by topical application of the
aeruginosa Phage
WPI, WP2, WP3,  XDR and MDR strain of Pseudomonas WP2, WP3,WP4 conferred highest Iytic activity against
WP4, and WP5 aeruginosa Pseudomonas aeruginosa
oMRI 1 MDR strain of Staphylococcus aureus Able to efficiently eradicate MRSA from mice.
Vo-| Mice treated with the specific phage displayed protection from
PYP MDR strain of Vibrio. parahaemolyticus Vibrio. parahaemolyticus and survived intraperitoneal and oral
challenges with the bacteria.
. MDR Pseudomonas aeruginosa associated Count of Pseudomonas aeruginosa is relatively lower in the treated
Biophage-PA . s .
with chronic otitis group with respect to the placebo group.
PEV20 Pseudomonas aeruginosa isolated from Ciprofloxacin in conjunction with PEV20 inhibited the biofilm

patient with cystic fibrosis and wound

formation by the bacteria.
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infection.

Klebsiella pneumonia isolated from foot Increasing the multiplicity of infection results in decrease in
ZCKPI P . . . o

wound of a diabetic patient. bacterial count and formation of biofilm.
MSa Mt Rt Sy hasaas auans, Phage successfully killed the bacteria, prevented the formation of

abscess resulting in reduction of bacterial load.

Table explaining the mode of action of various Bacteriophages against Multi Drug Resistant Bacteria

Table 4: Role of different Bacteriophages to combat Multi Drug Resistant Bacteria

42-45

SI.

Bacteria
No.

Phage

Places where clinical trials are
conducted

| PBABO8 and PBAB25

Acinetobacter baumannii

South Korea

2. BC-BP-0I to BC-BP-06,15 NCIMB
deposit numbers 4117441179

Pseudomonas aeruginosa

UCL Ear Institute and Royal National Throat,
Nose and Ear Hospital, Nottingham, UK

3. BPA43 Klebsiella

pneumoniae subsp. pneumoniae

Hisar, Haryana

4 WCHABPI and WCHABPI2 Acinetobacter baumannii WACEEE TR Hospltal, Sl OLE (LI Eriy
Chengdu, China
5. KpJH46®2 Klebsiella pneumoniae Mayo Clinic, Rochester, Minnesota, USA

Table showing various Phage whose clinical trials are conducted and clinically proved to be effective against Multi Drug Resistant Bacteria.

I1.1.8 Advantages And Disadvantages Of Phage Therapy

Phage therapy has various advantages over traditional
antibiotic therapy. Isolation of Phage is easier because of
their ubiquitous distribution and they are absolutely abundant
in every ecological niche which reduces their production cost
with respect to the antibiotics. The locations where one can
isolate bacteriophage are soil, water, hospital effluent, sewage
effluent, hot spring, faecal material and also human and
animals’ gastrointestinal tracts. Moreover, Phage therapy may
contribute to reduction of inflammatory response due to
decrease in mean C-reactive protein and Leucocyte count
making it one of the promising alternatives to Antibiotic
treatment. Bacteriophages are highly specific to a particular
bacterial strain hence they don’t affect the normal microbial
flora as compared to the antibiotics which may result in
various superinfections and complications. Due to their
innate self-replicating property the concentration of phages
usually increases at the site of the infection preventing the
growth of secondary pathogens which lowers the
requirement for application of multiple doses to cure the
disease. Other advantages of the phage are the absence of
cross-resistance to the antibiotics. Though there are few
disadvantages such as development of bacterial resistance to
the phage, application of novel phage cocktails can be a
potential solution to this problem. In absence of host phage
doesn’t multiply moreover phage may sometimes carry
virulence factors and antibiotic resistant genes. Though there
are clinically established bacteriophages against Multi Drug
Resistant bacteria (table 4) but due to its various
disadvantages phages are not accepted as pharmaceutical
drugs hence efficient research needs to be conducted in this
field to make this innovative tool functional for eradicating
Multi Drug Resistant Bacteria from the society.

2, USE OF NANOTECHNOLOGY TO COMBAT
MULTIDRUG-RESISTANT BACTERIA

2.1  Silver Nanoparticles As Nano-Bactericidal
Silver nanoparticles are one of the most studied and used

metal nanoparticles as an effective antimicrobial agent *. The
bactericidal mechanism of silver nanoparticles initiates

through anchoring and penetration of Gram-negative
bacteria's cell wall which leads to structural changes in the
morphology of the cell membrane, resulting in increased
membrane permeability that changes the transport pathways
through plasma membrane leading to cell death *.Thiol
groups of vital enzymes and the phosphate groups of DNA
interact more with silver nanoparticles leading to inhibition
of DNA replication followed by cell death “*The free
radical formation is linked with the antimicrobial mechanism
of silver nanoparticles which results in induced membrane
damage *°. This has been applied to Gram positive as well as
Gram negative bacteria. It has been shown that
physicochemical properties exhibited by nanoparticles edited
the bactericidal effect °'. Silver nanoparticles using
biosynthetic machineries like fungus, yeast, bacteria and plant
extracts possess strong antibacterial efficacy against many
multidrug resistant pathogens like Mycobacterium tuberculosis,
Pseudomonas aeruginosa, Streptococcus pneumoniae, Methicillin-
resistant  Staphylococcus  aureus,  Klebsiella  pneumoniae.
Biologically synthesized silver nanoparticles used against the
standard strain of Mycobacterium tuberculosis and 26 clinical
isolates including multidrug resistant (MDR) strains were
evaluated *% Various clinically approved Nanoparticles was
found to be effective against Multi Drug Resistant Bacteria
(Table 5).

2.2  Nanoprisms As Nano-Bactericidal

Nanoprisms show efficacy in combating methicillin-resistant
Staphylococcus aureus *'. The nano prisms work through
different mechanisms as they possess different crystalline
planes with different surface energy having variations in
surface reactivity, thereby releasing silver nanoparticles from
the tips and edges to promote efficient bactericidal effect.

2.3  Nitric Oxide Releasing Nanoparticles As Nano-
Bactericidal

Broad spectrum antibacterial activity is possessed by iron
oxide nanoparticles. It can inhibit the growth of many
antibiotic resistant bacteria such as Klebsiella pneumoniae,
Enterococcus faecalis, E. coli. NO is a natural gas that is
lipophilic and hydrophilic in nature, being unstable in an

L-170



ijlpr 2020; doi 10.22376/ijpbs/ijlpr.2020.10.5.L.166-179

oxygen environment . The reaction between nitric oxide
and oxygen or superoxide produces reactive oxygen as well
as nitrogen intermediate products that are toxic to the cell,
thus acting as an antimicrobial agent. The reactive nitrogen
oxide species (RNOS) like peroxynitrite (OONO-) **. Lipid
peroxidation of liposomes is mediated by Peroxynitrite,
which contributes to the antimicrobial activities of nitric
oxide nanoparticles *. Autoxidation of nitric oxide causes
DNA damage through RNOS where deamination of cytosine,
adenine, guanine occurs **. It also inhibits DNA repair
enzymes that are associated with the repair of alkylation to
DNA *. Further, it has been reported that this method is
efficient against methicillin-resistant ~ Staphylococcus aureus
(MRSA) and Acinetobacter baumannii.

2.4 Zinc Oxide Nanoparticles As Antibacterial Agent

Zinc oxide nanoparticles exhibit good antibacterial
properties *®* such as photocatalytic activity which is
attributed to the generation of reactive oxygen species
(ROS) **%°, Toxic effects have been shown by zinc oxide
nanoparticles to (methicillin)-resistant bacterial strains such
as Staphylococcus aureus and Streptococcus agalactiae ¢'. The
mechanism through which nanoparticles works initiates with
its internalization inside the cell which increases the oxidative
stress and causes damage to all the components of cell
including proteins, lipid and DNA ¢ resulting in
disorganization of cell wall followed by damage of cell
membrane. The toxicity of zinc nanoparticles depends upon
concentration and is very little toxic at low concentrations.
Zinc oxide nanoparticles exhibit antibacterial properties
against Gram-positive as well as  Gram-negative
microorganisms 2. These nanoparticles are also effective
against extended-spectrum 3 lactamases-producing E coli and
Klebsiella pneumonia .

2.5 Titanium Dioxide,
Antibacterial Agent

A  Nanocomposite As

As a substitute for metal nanoparticles, metal oxide
nanoparticles have also been widely used as an antimicrobial
agent. Titanium dioxide is one of the most commonly used
non-silver nanoparticles **'. Its antibacterial action is photo
dependent, consequently generates free radicals during
photocatalytic reactions. These free radicals operate further
through degradation of lipopolysaccharide, peptidoglycan,
phospholipids bilayer owing to peroxidation in the bacterial
cell. The efficacy of twenty-two different antibiotics with
titanium dioxide nanoparticles has been studied . Titanium
dioxide  particles  target S mutants  and A

actinomycetemcomitans, both are multidrug resistant organism
66

2.6 Copper Nanoparticles, A Nanocomposite As
Antibacterial Agent

The mechanism of action of copper nanoparticles is based on
the release of Cu (ll) ions on contact with moisture from the
nanoparticles itself. These copper ions then bind with the —
SH and —COOH groups of protein molecules of the bacterial
cell wall for further processing. Copper nanoparticles target
A. baumannii, a multidrug resistant organism .

2.7 Biofilm Formation And Quorum Sensing Inhibition
By Nanoparticles

Microbiology

Many studies have revealed that surface-functionalized NPs
combined with b-cyclodextrin (b-CD) are being able to
interfere with the signalling molecules preventing the
molecules interact with their cognate receptors therefore
repressing the process of Quorum sensing and obstructing
bacterial communication. Biofilm inhibition by gold NPs
(AuNPs) has been reported in many papers. Recently
Gopalakrishnan with his colleagues (Vinoj et al., 2015)”
established AuNPs coated AiiA (N-acylated homoserine
lactonase proteins) purified from Bacillus licheniformis were
found to inhibit EPs production and antibiofilm activity against
Proteus sp. at concentration of 2-8 pM. A recent study
revealed by Yu. et al. that AuNPs can strongly attenuate
Biofilm formation associated with Pseudomonas aeruginosa.
The mechanism of inhibition was due to interruption of
interaction mediated by adhesins between bacteria and the
substrate surface due to electrostatic interactions established
between AuNPs and the cell wall surface of Pseudomonas
aeruginosa. Thus, the use of NPs demonstrates an innovative
approach to penetrate the infectious biofilm targeting the
bacterial communication resulting in prevention of major
health issues associated with Multidrug Resistant Bacteria’'.

2.8 Antibiotic Conjugated Nanoparticles

Recent studies have highlighted a newer approach to combat
multidrug resistance where vancomycin has been conjugated
with nanoparticles have shown to enhance antibacterial
efficacy against Vancomycin resistant Staphylococcus aureus’'.
Gu et al. in 2003 7 have conjugated gold nanoparticles
(Au@Van) with vancomycin and used it against Vancomycin
resistant enterococcus and an increased antibacterial efficacy
was established. Other formulation (VBGNPs) was tested
against Escherichia coli and drug resistant strains of S.aureus.
Another interesting formulation was antimicrobial activity of
C-AuNp-Amp (Gold nanoparticle capped with chitosan and
coupled with ampicillin), the application of this formulation
resulted in two-fold increase in antimicrobial efficacy with
respect to free ampicillin alone. Other examples are amino
substituted pyrimidine do not possess any antibacterial
activity but when coupled with Gold nanoparticles shows
antibacterial activity against Multi Drug Resistant isolates of
Escherichia coli and Pseudomonas aeruginosa.”

2.9 Nanotheranostics

The term Theranostics explains the combination of Diagnosis
and Therapy into one single platform which results in bio
detection and real time monitoring of the required therapy.
The following strategy can be done in nanoscale and hence
termed as Nanotheranostics. Research is conducted and
many nanoplatforms are prepared to target drug resistance
bacteria. A selenium nanoplatform (Se@PEP-Ru) was
developed with potential fluorescent properties which can
not only help in imaging bacteria but also confer efficient
antimicrobial properties. Zhao and co-workers have
developed an innovative theranostics nanoprobe for near-
infrared fluorescence imaging and photothermal therapy for
MRSA infection. Kuo and his co-workers contributed to the
development of nano theranostics system using Au nanorods
conjugated with a photosensitizer hydrophilic in nature which
can serve as dual-function agents in photodynamic
inactivation and hyperthermia against MRSA'.
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2.10 Lipid Polymer Nanoparticles

As previously discussed about the inhibition of biofilm
formation as a novel strategy to combat Multi Drug
Resistance’. Another approach that supports the hypothesis
is the synthesis of Lipid Polymer nanoparticle by conjugation
of Rhamnolipid a biosurfactant secreted by Pseudomonas
aeruginosa to polymeric nanoparticle use to overcome
resistance of Helicobacter pylori. The mentioned novel
particulate system comprises chitosan polymer as a core of
the structure having clarithromycin encapsulated in it and the
shell is composed of I|,2-distearoyl-sn-glycero-3-
phosphoethanolamine-N-[amino(polyethylene  glycol)-2000)
DSPE-PEG2000-decoratedrhamnolipids. The eradication of
the microorganism was enhanced as the composition of
Rhamnolipid was enhanced resulting in considerable
reduction of biofilm biomass and viability.

2.11 Anti-Microbial Oligonucleotides

Anti-microbial oligonucleotides are Transcriptional factor
Decoys (TFD) which are found to be effective against Multi
Drug Resistant bacteria. These are very short fragments of
oligonucleotide specific to certain regions of the DNA
capturing certain regulatory proteins to repress certain
essential genes in the bacterial cell overcoming drug
resistance’®. One of the greatest challenges is the DNA
encapsulation in a suitable carrier protecting it from nuclease
degradation and targeting to the specific site of action.
Gonzalez-Paredes et al. gave a solution by coating anionic
solid lipid nanoparticles with protamine or cationic bola
amphiphile 12-bis-tetrahydroacridinium. Both the compound
shifted the zeta potential to positive values and revealed the

Microbiology

protective effect of TFD from the attack of nuclease. Many
authors reported other possibilities of conjugating
oligonucleotide antimicrobials with various cationic materials
like peptides for penetrating the cell.

2.12 Cationic Peptides

Inclusion of Cationic peptides can be an alternative option to
conventional antibiotics. The unique features of these
peptides are their amphiphilic nature and their cationic
charge, which help them to target negatively charged
bacterial membranes leading to release of intracellular
contents and death”. As the restoration of cell structure is
practically impossible hence the emergence of bacterial
resistance can be successfully minimized.

2.13 Nano-Antibiotic

A new innovative method where the therapeutic agents are
transformed into nano-sized assemblies, this may result in a
carrier-free drug delivery approach. This approach can alter
the physical properties of antibiotics, increasing their rate of
dissolution, drug bioavailability, side effects potentially
reduced, improved interaction and penetration within the
bacterial membranes, thus can efficiently inhibit against
antibiotic-resistant strains. Studies have revealed the effect of
Clarithromycin nanocrystals towards Helicobacter pylori. The
bioavailability and concentration of the drug at the desired
site of action was better with respect to coarse
clarithromycin  powder. Hyperbranched polyester was
developed to be a new nano-grade antibiotic thus
overcoming the complication of antibiotic encapsulation’.

Table 5 shows the role of Nanotechnology to combat MDR by using different nanoparticles

-
61,66,77,78

Nanotechnology using Particle size Target MDR organisms Place where clinical trials are

nanoparticles (nm) conducted

ey ferspmidds 5100 Methicillin-resistant Staphylococcus University of S!Ie5|a, ul. Jagiellonska 4,
aureus 41-200 Sosnowiec, Poland

Nitric oxide releasing 20-100 (NO University of Michigan

nanoparticles donor particle)

Klebsiella pneumoniae, E. coli

Medical School, Ann Arbor, Michigan

Methicillin resistant Streptococcus

University of Michigan; Ann Arbor,

Zinc oxide 12-60 agalactiae and Staphylococcus aureus ~ USA
o . Plymouth University, Plymouth, Devon,
Titanium oxide 20 Staphylococcus aureus PL6 8BU, UK
Cobper nanoparticle— Uniformed Services University of the
o et 5 nm A.baumannii Health Sciences, Bethesda, Maryland,

cotton composites

USA

Table explaining Nanotechnology and use of clinically approved nanoparticle to combat Multi Drug Resistant Bacteria.

2.14 Use Of Crispr-Cas System To Combat Multidrug-
Resistant Bacteria

Genome editing has transformed the modern world by the
availability of genome editing which edits the genomes of
organisms meticulously ”°. The CRISPR-Cas system is one of
the most widely used genome editing tools. The emergence
of Clustered Regularly Interspersed Short Palindromic
Repeat (CRISPR) that function with CRISPR Associated (Cas)
proteins as (CRISPR)-Cas9 system is an RNA guided
endonuclease that targets DNA to knock-on and knock-out
DNA specific antibiotic target sites. ® This system shows
enormous applications in various fields like in the treatment

of genetic diseases °', to perform genome engineering of

many bacteria ¥, plants ¥, mice ®, also antibiotic resistance is
reversed in different multidrug resistant bacteria through
successful targeting of resistance genes. * Sometimes, it
functions as a molecular recording device %. This genome
editing system is found in bacterial genomes as well as
archaeal genomes around 50% and 87% respectively ¥. The
genetic loci of the CRISPR-Cas systems comprise the CRISPR
array, which consists of short repeated sequences (repeats)
and similarly sized flanking sequences (spacers). CRISPR array
spacers are known as protospacers, which are derived from
DNA sequences from invasive phage or plasmid. Cas
proteins are essential functional elements of CRISPR systems
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that are encoded upstream of the CRISPR array for
determining the behaviour of the system ®.The CRISPR-Cas
system is used efficiently to combat multidrug-resistant
Staphylococcus aureus (MRSA), a dangerous human pathogen
that is resistant to B -lactam antibiotics ¥. The pathogen is
resistant since the mecA methicillin resistance gene is
present which codes for penicillin-binding protein 2A,
resulting in the inhibition of the activity of B -lactam
antibiotics. To combat this MRSA, the promoter region of
mecA in MRSA is targeted by the electroporation technique
to introduce the effector plasmid vectors and
oligonucleotides for the suppression of transcription. This
suppression mechanism requires the designing of CRISPR-
dCas9 system *°. The mechanism of CRISPR systems is
similar to RNA interference (RNAI) in eukaryotic cells, that
use small RNAs (sRNAs) to identify and neutralize. In short,
the CRISPR- dCas9 system requires the creation of the RNA
Guide (gRNA), including a target-specific nucleotide spacer
(~20nt) and an endonuclease of Cas9 °'. The gRNA signals
Cas9 to the target DNA, to produce a double-stranded

Microbiology

homologous end junction is used to resolve this split. The
former works based on an error-prone mechanism that can
knock out the gene by a combination of absurd-mediated
decay of the mRNA transcript and pre-maturity truncation of
protein mechanisms, a process that is not always especially
successful while the latter works on another method for
fixing a double-strand break in DNA by introducing a
particular mutation with the insertion of a homologous piece
of DNA *. Mutants are produced through these processes.
Additionally, this device may be used for activation as well as
inhibition of transcription by using the catalytically dead Cas9
(dCas9). One of the commonly utilized expression tools for
MecA gene expression levels is Reverse Transcriptase
Quantitative Real-Time Polymerase Chain Reaction (RT-
qPCR) *. By analyzing with this tool, it was known that the
expression of the mecA gene in the CRISPR-treated sample
was reduced which reflects a positive decrease in gene
transcription, thus combating multidrug- resistant bacteria.
The CRISPR-Cas system provides new insights for the
elimination of MDR pathogens, making differentiation

break . The pathway of homologous repair or non- between beneficial and pathogenic microorganisms (Table 6).
Table 6 Role of CRISPR-Cas system to combat MDR 2228
Sl. No. Phage/ plasmid Bacteria Places where clinical training are conducted
Staphylococcus
| aureus Staphylococcus aureus str  Mississippi State University, Mississippi State, Mississippi, United
’ strain RF122 ain ATCC 6538 States of America
¢SaBov-Cas9-nuc
2. EI:E?EFRESBL E;f/f;e;f?'; coli K12 Sungkyunkwan University, Suwon 16419, Republic of Korea
Department of Biological Sciences, The University of Texas at
3 Plasmid pKH88 Enterococcus faecalis Dallas, Richardson, Texas, USA Department of Immunology &
’ [sp-ermB] Microbiology, The University of Colorado School of Medicine,
Aurora, Colorado, USA
Auburn University, Auburn, AL, USA
4. Plasmid pSH 12 Clostridium difficile Guizhou Medical University, Ministry of Education, Guiyang,
People's Republic of China
Department of Medical Microbiology, University Medical Centre
Utrecht, Utrecht, The Netherlands.
plasmids Enterococcus faecium Department of Food Science, University of Wisconsin-Madison,
5. pVPL3004 and strain E745 Madison WI, United States of America.
pVDMI000I College of Medical and Dental Sciences

Institute of Microbiology and Infection, University of Birmingham,
Birmingham, United Kingdom.

Table shows the application of CRISPR-Cas system under

2.15 Antimicrobial Peptides

Recently many studies are being conducted to overcome the
problem of Multi Drug Resistance and it was treated as a
potential  alternative to conventional antibiotics'®.
Antimicrobial peptide confers weak antimicrobial activity but
strong immunomodulatory activity when the host organism is
invaded by pathogenic microorganisms. They are sometimes
termed as ‘“host-defence” peptides, they are unable to
activate the adaptive immune system but modulate the
immune system through adjuvant-like activity. Report of
bacteria getting resistant to antimicrobial peptides by altering
the charge of surface molecules or proteolytic cleavage by
secreting extracellular protease is rare and takes a long
period when compared with conventional antibiotics.

clinical trials used for combating Multi Drug Resistant Bacteria.

Antimicrobial peptides incur more cost with respect to
antibiotics but studies revealed that antimicrobial peptides

can act in a synergistic fashion when applied with

antibiotics'®.

3. ANTIMICROBIAL PEPTIDES AND ITS MODE OF
ACTION

3.1 Effect On Cell Wall Lipid Il

Production of bacterial cell wall also termed as peptidoglycan
can be inhibited resulting in development of resistance in
bacteria against B lactam antibiotic such as penicillin. MRSA
was found to have penicillin-binding protein 2a (PBP 2a)
which was absent in susceptible Staphylococcus aureus.
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Vancomycin resistance was developed due to the presence of
depsipeptide D-Ala-D-Ala in the peptidoglycan. However
antimicrobial peptides having unusual amino acids also
termed as Lantibiotics may exert antibacterial activity via
interaction with the cell wall components. Lantibiotics are
antimicrobial peptides which are ribosomal-synthesized and
post translationally modified peptides that consist of
intramolecular ring structure usually produced by Gram
positive bacteria and acts on broad range of bacteria
comprising both Gram positive and Gram negative in nature.
Lantibiotics are classified into either type-A or type-B that
can damage bacterial membranes and inhibit production of
enzymes respectively. Examples of Type A-Lantibiotics
include Subtilin, epidermin, nisin and Pep5 whereas Type-B
include Cinnamycin and Metsacidin. Recently studies revealed
nisin can produce transient pores that results in cytoplasmic
membranes to be permeable. Subtilin permeabilizes lipid
containing membrane in lipid Il dependent manner '°"'%2,

3.2 Ameliorating The Membrane Potential For
Induction Of Membrane Permeabilization

Major two mechanisms of multidrug resistance are
phenotypic changes in microbes under certain growth
conditions and lesser accumulation of antibiotics due to
nonspecific pumping out of drugs by the efflux transporter
proteins. The most common mechanism of evading the
action of antibiotics is due to disruption of cytoplasmic
membrane by formation of pore through mechanisms of
barrel-stave, toroidal pore or through a non-pore carpet like
mechanism. Furthermore, antimicrobial peptides should be
able to permeate the cell wall and the plasma membrane to
reach their desired intracellular targets such as nucleic acids
and functional proteins. In the barrel-stave model channel
forming peptides of variable number are positioned in a
barrel-like ring surrounding an aqueous pore. These types of
transmembrane pores are induced by Alamethicin and
Ceratotxin'®. In the Carpet model, antimicrobial peptides
start accumulating on the membrane surface forming an
electrostatic interaction with the anionic phospholipid heads
of the plasma membrane carpeting various sites of the
membrane. At the verge of reaching the threshold
concentration of the phospholipid, disruption of membrane
occurs in a detergent like manner without any formation of
pores. Cercopin Pl and Caerin I.I are the examples of
antimicrobial peptides following the carpet model of
membrane disruption'®. Toroidal pore model involves the
antimicrobial peptide associated with the phospholipid head
group regions of the bilayer resulting in the induction of high
curvature fold in the bilayer resulting in both the leaflets of
the bilayer communicate directly at a torus which is lined by
the leaflets. Examples are Magainin, Cathelicidin and HPA3'®,

4. FUTURE DIRECTIONS

Phages possess differences in biological, physical, and
pharmacological properties aa compared to conventional
antimicrobials, and need attention. Phages are highly specific
so there is a need to employ multiple phages isolates for
more efficient treatment. Alternative approval pathways
required to be addressed for phage therapy '®. Clues have
been provided from the in vivo and in vitro studies related to
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the specific mechanisms on which nanotechnology works on,
as nanoparticles trigger an adverse effect which enlightened
the future surface modification of nanoparticles to make
them less toxic and safer '%. These concerns are related to
nano safety and need to be addressed. In vitro methods to
establish the toxicological profile of nanoparticles are needed
for the classification according to the data derived from this
profiling. These efforts might provide information on the
concentration of nanoparticles that should be taken for safe
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overcome this, many techniques are still left to be devised in
the near future. A proper tool for the selection of sgRNAs
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Furthermore, more research is required to be conducted to
increase on-target efficacy with minimal off-target effects '%.
The current momentum to soothsay the ‘future of CRISPR’
lies in controlling the composition of the microbial
community to being utilized as a conventional broad-
spectrum antibiotic.

5. CONCLUSION
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to a new innovative method where nano-sized assemblies
resulted in a carrier free drug delivery approach. Further
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research for their optimization and fruitful application.
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