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Abstract: The development of bacterial biofilms entails regulatory as well as signalling mechanisms that regulate the shift from a mobile to a 
stationary state of existence, the production of the extracellular polymeric matrix, and the progression of 3-dimensional biofilm formation with 
emphasis on how easily they may be created and how crucial they are in biological, ecological, and industrial settings, biofilms are the subject of 
extensive research. Biofilms and a variety of pathogenic human disorders are frequently linked. Since bacteria in biofilms can resist antibiotics, the 
immune system, and other treatments, biofilm infections are typically long-lasting. Many prokaryotes include CRISPR-associated proteins (Cas), a solid 
adaptable immunological system that may be programmed to damage the bacterial genomes and induce cell death. Short palindromic repeats that are 
grouped and adequately spaced together make up CRISPR-Cas. In light of this, CRISPR-Cas can be seen as an exciting strategy to address and 
overcome antibiotic resistance. Furthermore, the CRISPR-Cas system can create "precise antimicrobials" that target bacterial infections according to 
specific DNA sequences. This CRISPR-Cas technique is susceptible to drug-resistant microorganisms due to its selective targeting of the genes 
involved in biofilm formation, pathogenicity, and antibiotic resistance. However, this method requires potent vectors for the CRISPR-Cas system to 
access the bacterial genomes. As vectors, genetically engineered Phage, liposomes, and lipid-mediated nanoparticles are exciting options. This 
technique has been used to prevent extracellular and intracellular from forming biofilms. The most current developments in creating innovations and 
possible advantages of the various CRISPR-Cas delivery methods for the deliberate eradication of bacterial pathogens will be covered in this review, 
focussing mainly on the anti-biofilm potential, which is found to be one of the primary causes of the difficulty of irradiation of Multi-drug resistant 
bacteria. Additionally, each distribution system's positive aspects are highlighted, along with its challenges and potential for advancement in the future. 
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1. INTRODUCTION 
 
Biofilms, the most prevalent stage of bacterial life in nature, 
play a significant role in the prokaryotic life cycle. Almost 
every abiotic or biotic surface can support its formation1-3. 
Biofilms are made up of a syntrophic consortium of 
microorganisms that are embedded in a self-made matrix of 
extracellular biopolymers. These biofilms offer protection, 
interact with the environment, encourage quorum sensing 
among bacterial cells, and improve the ability of 
microorganisms to disperse from microbial clusters and 
colonize new niches4,5. The pathogenic bacteria that produce 
biofilms include Klebsiella pneumonia, Enterococcus faecalis, 
Staphylococcus epidermidis, Pseudomonas aeruginosa, Proteus 
mirabilis, and other gram-negative bacteria6. They are 
frequently associated with chronic infections, thought to be 
harmful to human health, and typically resistant to antibiotic 
treatments7,8. However, non-pathogenic biofilm-forming 
bacteria such as Pseudomonas extremorientalis, Paenibacillus 
peoriae, and Streptomyces cirrus can successfully defend plants 
against disease9,10, increase plant development, and 
encourage symbiotic relationships between mycorrhizal fungi 
and plant roots11. 
 
1.1. Composition of microbial biofilms 
 
A biofilm is a structured collection of bacteria grows inside 
an extracellular polymeric matrix and affixed to a live surface 
in an irreversible manner12,13. Biofilms cannot be removed 
unless they are rapidly rinsed. Extracellular polymeric 
compounds are created during the biofilm's adhesion phase 
to the surface. The biofilm is typically between 0.2 and 1.0 
mm thick. However, it is no larger than 10 to 30 nm in size14. 
The extracellular matrix, which makes up the majority of the 
biofilm's volume and is typically composed of proteins (>2 
per cent), polysaccharides (1-2 per cent), DNA and RNA 
molecules, ions (bound and free), and 97 per cent water, 
makes up the remaining volume. Microorganisms typically 
comprise 5-35 per cent of the biofilm's volume. The water 
content of a biofilm is attributed to the flow of essential 
nutrients inside it15,16. Further, the extracellular matrix is a 
scavenging mechanism to remove crucial nutrients and 
minerals from the environment and trap them. 
 
1.2. Steps of biofilm formation 
 
The first step in forming a biofilm is adhesion to a surface, 
irrespective of being living or not, this attachment will 
produce a microcolony, which will give rise to three-
dimensional structures, and it will end with separation after 
maturation. Next, quorum sensing, unique signalling between 
the microorganism's cells, is required. The transcription of 
specific gene sets necessary for biofilm production differs 
from planktonic forms of the same microbial species. Finally, 
the extracellular polymeric material matrix's visco-elastic 
characteristics are responsible for the mechanical stability of 
biofilm17. 
 
1. The first contact and attachment to the surface have been 

established via appendages like pili and flagella, which is 
the first step in creating a biofilm. Other physical forces, 
like the Vander Waals and electrostatic interaction 
forces, can also hold them together. These appendages 
strengthen the connection between the attachment 
surface and the bacteria. Additionally, during the creation 
of a biofilm, microbial cells connect to a surface 

(adhesion) and interact with one another (cohesion)18,19. 
Since it reduces the repulsive force between the 
bacterium and the character, surface hydrophobicity can 
also contribute to better microbe attachment20. 

2. Micro-colony formation is the second stage of biofilm 
formation. A phase of microbial cell multiplication and 
division starts once microorganisms connect to the 
surface. This process usually begins inside the 
extracellular polymeric substances by specific chemical 
signalling. The establishment of a syntrophic association 
an affiliation of two or more metabolically distinct 
bacteria for using particular substrates as a source of 
energy, dependent upon one another can be fully 
facilitated by biofilm21. 

3. Maturation and architecture comprise the third step in 
the creation of a biofilm. Here, auto-inducer signals are 
used by microbial cells to connect with one another22,23. 
In addition, quorum sensing is made easier by this 
autoinducers24. At this stage of development, specific 
gene products thought to be necessary for synthesizing 
extracellular polymeric compounds are expressed. 

4. Dispersion or detachment of the biofilm is the fourth step 
in creating a biofilm. First, the biofilm's microbial 
inhabitants rapidly replicate and disperse to transit to a 
motile state. Next, a natural pattern of dissociation takes 
place25. Finally, various saccharolytic enzymes, including 
hyaluronidase produced by Streptococcus equi26, are 
produced by microbial communities within the biofilm 
during the detachment process that transfers the bacteria 
into a new colonization zone. Infections spread more 
readily when microbial cells separate and move to a new 
place27. 

 
1.3. Pathogenesis of disease: The role of biofilm 
 
A decreased metabolic rate along with a reduced rate of cell 
division may arise from the bacteria living inside biofilms, 
altering their gene expression, metabolism, and protein 
synthesis in response to ambient anoxia and nutrients28-30. 
These alterations make the bacteria more resilient to 
antimicrobial treatment in addition to inactivating the anti-
bacterial targets or lowering the requirements. Additionally, 
by developing biofilms, the bacteria can subvert the host's 
immune system31. A biofilm infection can simultaneously 
activate the host's innate and acquired immune systems. Still, 
neither of these systems can eradicate the biofilm pathogen 
and speed up collateral tissue damage32. Therefore, biofilm-
related disorders are typically recurrent infections that 
progress slowly, are seldom treated by the immune system, 
and have variable responses to antimicrobials. Biofilms can 
result in severe chronic disorders and are associated with 
more significant morbidity and mortality rates. Therefore, a 
better technique is required to prevent pathogenic organisms 
from forming biofilms. Treating biofilm infections is 
particularly challenging when dealing with antibiotic 
resistance and tolerance. Antimicrobial agent deactivation in 
the outer layers of the biofilm by binding to matrix 
components or enzymatic modification restricted 
antimicrobial agent diffusion in the biofilm matrix, and the 
presence of niches in the biofilm with less responsive cells, 
such as starved cells and persisted cells, have all been 
proposed as mechanisms for antimicrobial resistance and 
tolerance33-5. We urgently require novel approaches that can 
prevent these resistance mechanisms. The CRISPR-Cas 
system is one option that is now generating much interest. 
Thus, the review focused on the clinical significance of biofilm 
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formation and increased virulence; further CRISPR-CAS 
system as an alternative approach for biofilm inhibition has 
been highlighted with particular emphasis on CRISPR-Cas 
Delivery methods. 
 
2. CRISPR-CAS SYSTEM TO INHIBIT BIOFILM 

FORMATION 
 
Numerous bacterial as well as archaeal genomes contain 
"Clustered and Regularly Interspersed Short Palindromic 
Repeats (CRISPR)" and CRISPR-associated (Cas) genes. 
Variable sequences found in prokaryotes have been 
employed as an additional typing technique in clinical, 
epidemiological, and evolutionary investigations since the 
usual CRISPR loci were identified in the 1980s, long before 
their physiological relevance was understood. Ultimately, the 
explanation of CRISPR-Cas as an adaptive immune system 
was made possible by the realization that CRISPR spacers 
match sequence pieces of mobile genetic components. Small 
CRISPR RNAs serve as the primary building blocks of this 
particular prokaryotic defence system, directing nucleases to 
target the complementary nucleic acids of invasive viruses 
and plasmids. CRISPR-Cas systems can affect bacterial 
pathogenicity and other genetic changes through two non-

exclusive pathways36. On the one hand, CRISPR-Cas 
protection can lessen the possibility of bacterial pathogenicity 
since mobile elements can transfer foreign DNA containing 
possible virulence factors such as toxins or antibiotic-
resistance genes. On the other hand, however, gene 
expression is controlled, which may cause the expression 
underlying virulence genes to decrease. This effectively stops 
many bacteria from building biofilms (figure 2). Three steps 
make up the CRISPR-Cas immunity system (figure 1): 
 
1. Spacer acquisition or adaptation, the initial step 37, adds 

the sequences of recognized spacers to the CRISPR array. 
2. In the second phase, referred to as biogenesis or CRISPR 

RNA (crRNA) expression, RNA polymerase transcribes 
pre-CRISPR RNA (pre-crRNA) (RNAP). Then, distinct 
endoribonucleases separate these pre-crRNAs into 
imperceptible crRNAs. Based on the role of crRNA, 
these RNAs are also referred to as guide RNAs38,39. 

3. Interference, the third and last step, is where interference 
happens40. CrRNAs recognize and shape base pairs 
exclusive to international RNA/DNA that are almost 
perfectly complementary. This makes it easier to separate 
the complex of the foreign nucleic acid and crRNA. 

 

 
 
Fig 1: The main steps in CRISPR-CAS immunity are depicted here. 1) Adaptation: New spacers are inserted in 
to the CRISPR locus; 2) Expression: CRISPR locus transcription and CRISPR RNA processing; 3) Interference: 

CRISPR RNA and CAS protein detect and degrade mobile genetics. 
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Fig 2: Use of CRISPR technique as an antimicrobial 
 
2.1. Three different CRISPR/Cas system types 
 
Type I, Type II, and Type III categorize the CRISPR-Cas 
system (as listed in Table 1). The classification was done 
using the distinctive genes that each type possessed. As an 
illustration, type I carries the cas3 gene, type II the Ccas9 
gene, and class III the CSM/CMR gene. Since these two 
proteins are essential for the spacer, it is noteworthy that 
they are present in all forms and subtypes of the CRISPR 
system41,42(Table 1). 
 
2.1.1. Type I system 
 
The majority of the organisms in this system are bacteria and 
archaea43. Six subtypes (A–F) that code for the cas3 gene. 
Cas344 exhibits multi-domain helicase and nuclease activity. 
It consists of two domains: the helicase domain DExH for 
double-stranded DNA cleavage and the phosphohydrolase 
domain HD for DNA cleavage40, 41. Together, these domains 
break down invading DNA. Each subtype of the type I system 
contains an abundance of Cas proteins that come together to 
form the complex known as the CRISPR-associated complex 
or the crRNA-guided surveillance complex (CAS-CADE) for 
defence against viral complexity. The targets complementary 
to the crRNA spacer can be found and attached with the 
help of these complexes41. The first instance of them was in 
Escherichia coli K1245. 
 

2.1.2 Type II system 
 
The majority of this system is made up of bacteria. It is the 
system that connects to other CRISPR systems., This system 
is divided into type II-A as well as type II-B. Accordingly, the 
type II-A system comprises the csn2 gene, whereas the type 
II-B system consists of cas1, cas4, cas9 and cas2 genes. The 
type II system contains a specific protein called Cas9 that 
participates in the production of crRNA and the cleavage of 
foreign DNA46. The cas9 gene has the HNH domains and 
RuvC domains47. The HNH domain assists in DNA cleavage 
that complements the crRNA guide, whereas the RuvC 
domain is involved in non-complement strand cleavage47,48. 
The trans-activating crRNA is necessary for the type II 
system's crRNA synthesis (tracrRNA). 
 
2.1.3 Type III system 
 
Type III-A and type III-B are the two subtypes of the Type III 
system. The type III CRISPR-Cas system encodes for both 
the cas6 and cas10 genes. Endoribonuclease Cas6 performs 
its tasks independently of and unrelated to the CASCADE 
complex49. However, in developing crRNA and DNA 
cleavage, Cas10, also known as "repeat-associated mystery 
protein", plays a prominent role50-51. Foreign RNA is cut by 
the type III CASCADE complex facilitated by the binding to 
mature crRNA51. The bacterium Staphylococcus epidermidis 
use this process. 

 

Table 1. The existence of different CRISPR-Cas system variants in various bacterial species 
Type of CRISPR-Cas 

system 
Associated Bacteria 

Type I system38, 52-57 Myxococcus Xanthus, Escherichia coli Campylobacter foetus, Bacillus halodurans, Campylobacter fetus, 
Propionibacterium acnes and Salmonella sp.  

Type II system50, 58-64 Streptococcus pyogenes, Staphylococcus aureus, Listeria monocytogenes, Neisseria meningitides, 
Campylobacter jejuni, and Enterococcus faecalis. 

Type III system65-67 Pyrococcus furiosus, Staphylococcus epidermidis and Mycobacterium tuberculosis.  

 
3. CRISPR-CAS SYSTEM DELIVERY 
 
For the CRISPR system to work and deliver its genes inside a 
cell's genome, the ribonucleoprotein complex, which includes 
the key components endonuclease Cas9 and guide RNA, 

must be present in the cell's nucleus. However, numerous 
significant obstacles have been in delivering the CRISPR/Cas9 
framework. The CRISPR/Cas9 device's DNA, mRNA, and 
protein forms often have vast diameters, making it 
challenging to load them onto delivery vehicles. Additionally, 
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the target cells must gather in the target organs or tissues, 
internalize, and then function as a gene-editing tool in the cell 
nucleus when the CRISPR/Cas9 technique is used in vivo. 
Since effective delivery systems for the CRISPR/Cas9 system 
are crucial for its clinical uses, they have recently gained 
research attention and developed quickly 68. Through skipping 
the demands for transcription and translation, the method of 
delivering protein-format Cas9 nucleases offers the most 
fleeting expression time and permits quick editing of genes. 
Furthermore, the payload endonuclease Cas9 should be 
protected due to ribonucleoprotein complex delivery, and 
RNA should be pointed away from probable breakdown 
pathways69. Here, we summarise current advancements in 
the realm of CRISPR/Cas9 system delivery vehicles and their 
underlying mechanisms of action. 
 
3.1. Factors influencing the effectiveness of the 

CRISPR/Cas system delivery70 
 
The site-specific gene editing potential of the CRISPR/Cas 
system has been demonstrated in several additional 
applications. However, its efficacy is governed by several 
variable elements that must be considered, mainly if utilized 
for in vivo human gene therapy. These elements consist of: 
 

1. Choosing the target DNA's site. 
2. Designing of sgRNA. 
3. Cutting off-target. 
 
3.2. Phage-based CRISPR-CAS delivery system 
 
Bacteriophages (phages), the most prevalent and extensively 
dispersed microorganism on Earth, provide a limitless 
resource for investigating the development of natural 
remedies. Bacteriophages are viruses only found in bacteria 
and can infect and kill bacteria directly. Phage therapy uses 
phages to combat bacterial infections and infectious 
disorders. Phagemids and modified temperate/virulent phages 
are phage vectors that introduce CRISPR-Cas systems into 
bacteria (Table 2)71. CRISPR-Cas phagemid vectors are made 
up of the necessary CRISPR-Cas components and a plasmid 
structure that has been cloned into a DNA phage-packaging 
sequence. Phage genome-produced CRISPR-Cas9 complex, 
which binds specifically to the target region and causes a 
double-strand DNA break during phage infection, makes up 
CRISPR-Cas-based Phage engineering72-73. The donor's 
plasmid had the mutations added to it. The DNA break can 
be repaired by recombining with the donor to produce 
interest mutants. 

Table 2: Significant Phage-based CRISPR/Cas clinical trials 
Trial strategy Targeted/inhibited       

gene or strain 
Type of 

CRISPR-Cas 
system used 

Targeted 
virulent 

pathogen 

An Escherichia coli is created to determine chosen phage gene 
deletions74. 

Non-essential gene, gene 
1.77 

I        Phage f1 

Using a single plasmid containing donor DNA and CRISPR-Cas 
components, the phage genome was cleaved by CRISPR-Cas, 
reconstituted by homologous donor DNA recombination, and 
transformed into recombinant phages with deletion/ insertion 
mutations75. 

 
vpsR gene 

 
I 

 
Vibrio cholerae 

Phage editing was used to create a reliable platform for genome 
engineering76.  

DGCC7710-pRS91R 
strain 

II Streptococcus 
thermophiles 

Trans-activating crRNA, Cas9, and the other two system 
components were cloned into a single plasmid with crRNA. The 
CRISPR-Cas9 complex is generated once they are transformed 
into host cells, become expressed, and form a double-strand 
break by attaching to the target site. As a result, the biofilm 
formation is neutralised77. 

Listeria phage A511 
strain. 

 
II 
 
 
 

 
Listeria 

monocytogenes 

The transcribed crRNA from an external plasmid is used in 
addition to the native endogenous CRISPR-Cas system to 
complete the process. The same plasmid was used to clone 
donor DNA as well. This finally leads to the mutation of the 
genes in charge of biofilm development, producing offspring with 
desirable mutations78. 

LAM104 strain III Staphylococcus 
epidermidis  

The biofilm-forming genes were inhibited by creating silent 
mutations at numerous genomic loci79. 

fnbA gene III Staphylococcus 
aureus 

 
3.3. Advantages of phage-based CRISPR-Cas delivery 

system 
 
• The delivery rate is very successful. 
• The expression of transgenes is very reliable. 
• Effective transfection rate. 
• Capable of both in vitro as well as in vivo delivery. 
 
3.4. Shortcomings of phage-based CRISPR-Cas 

delivery system 
 
• Poor transmission efficiency. 

• We have a limited host population. 
• For the potential transfer of virulence genes, generalized 

transduction is necessary. 
• Limited efficiency. 
 
4. CONJUGATIVE CRISPR-CAS DELIVERY 

SYSTEM 
 
The modified CRISPR/Cas 9 system is transmitted among 
bacteria through conjugation using a host-independent 
conjugative plasmid to delete virulence genes. The most 
significant impact on pathogen suppression comes through 
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bacterial conjugation80. So, bacterial conjugation is the 
optimum method for introducing the CRISPR/Cas 9 system 
into the natural environment. It is known that conjugative 
plasmids contain genes that make it easier for biofilms to 
form81, potentially due to improved cell-to-cell contact82, 
which speeds up conjugative plasmid transfer. To modify the 
makeup of human microbial communities, conjugative 
plasmids may be well suited for delivering molecular tools, 
many of which exist as biofilms83–86. Conjugative plasmids are 
a crucial mechanism for CRISPR nuclease delivery to 
bacteria. In a cis-conjugative system, the plasmid encodes the 
conjugative apparatus and the CRISPR nuclease 87. A 

Bacterium that acquires the cis-conjugative plasmid develops 
into prospective donors for more Bacteria that receive the 
cis-conjugative plasmid become potential donors for more 
conjugation cycles in the future, leading to an exponential 
rise in the population of conjugative donor bacteria. The cis-
conjugative plasmid is tested in a two-species co-culture 
system to find a high frequency of conjugate plasmid transfer 
from species to species under favourable cell-to-cell 
conditions. This, in turn, emphasizes the potential of 
conjugative administration of the CRISPR nucleases as a 
powerful tool for microbiome alteration88. The related 
clinical trials are listed in (Table3). 

 

Table 3. Significant conjugative CRISPR/CAS clinical trials 
Trial strategy Targeted strain/ gene Type of CRISPR-

Cas system used 
Targeted 
virulent 

pathogen 

Plasmid interference and conjugation efficiency 
studies using E. coli as the heterologous host89. 

R20291 I Clostridium difficile 

The factors of genotypic and phenotypic 
pathogenicity were evaluated. The prophage 
integrates the plasmid90. 

EFA A, esp, cyl A Collaboration of I, 
II, and III 

Enterococcus 
faecalis 

CRISPR nuclease and conjugative machinery 
encode through a cis-conjugative system in the 
plasmid. They developed 65 sgRNA in all91. 

Four genes with ambiguous 
phenotypes, 23 non-essential 
genes, as well as 38 essential 

genes. 

 
I 

 
Escherichia 

coli 

The broad-host-range conjugative plasmid 
pKJK592 expresses cas9 protein. 

aacC1 gene I 
 

Escherichia coli  

 
4.1. Advantages of Conjugative CRISPR-Cas delivery 
system93-96 
 
• Has a broad host range. 
• The restriction-modification system cannot be used on 

the system. 
• The system's huge coding capacity can be quickly 

developed. 
• No cellular receptor is necessary. 
• It offers a simple method for bacterial resistance. 
 
4.2. Shortcomings of Conjugative-based CRISPR-Cas 
delivery system88 
 

 On occasion, it could lead to a low frequency of 
conjugation. 

 Its random insertion within the host genome is a risk 
factor that is connected to it. 

 More significant off-target impacts were observed. 
 
5. LIPID NANOPARTICLES/LIPOSOME-
MEDIATED CRISPR-CAS DELIVERY SYSTEM 
 
Since they have been around for a while, lipid nanoparticles 
have been utilized to carry nucleic acids and other 

compounds to cells. Lipids are also one of the elements used 
most frequently in non-viral gene delivery systems97–99. 
Amphiphilic molecules with hydrophobic tail and head groups 
make up the majority of lipid molecules. In an aquatic setting, 
these amphipathic lipids self-assemble to form bilayer 
vesicles. Thus, one or more double layers are present in the 
spherical phospholipid vesicles known as liposomes100. 
Because they may attach to phospholipid membranes and 
deliver specific components directly to the cell, they are a 
flexible system. Furthermore, lipid nanoparticles are used in 
polymeric shells by conjugating Rhamnolipid, a biosurfactant 
produced by Pseudomonas aeruginosa101. Increased 
rhamnolipid composition caused a noticeably lower level of 
biofilm biomass and viability101. Using lipid nanoparticles, 
CRISPR/Cas9 components can be delivered in one of two 
ways: either by providing genetic material (plasmid DNA or 
mRNA) along with Cas9 and sgRNA or by delivering Cas9: 
sgRNA RNP complexes. When Cas9 mRNA and sgRNA are 
used, the method performs similarly to microinjection102. 
However, many research teams have discovered that Cas9: 
sgRNA RNP complexes are extremely efficient103-104. 
Numerous studies have successfully exploited CRISPR-Cas 
delivery methods mediated by nanoparticles or liposomes to 
stop the development of biofilms (Table 4). 

 

Table 4. Significant lipid nanoparticles/liposome-mediated CRISPR/CAS clinical trials 
Nanoparticle 
composition 

Size 

(μm) 

Charge Mechanism of action Targeted virulent 
pathogen   

DISPC:Chole105 0.2 Neutral Bacterial membrane fusion Pseudomonas aeruginosa 

DSGPC:Chole106 0.2 Neutral Bacterial membrane fusion Burkholderia cenocepacia 

DISPC:Chole:SLA107 0.12 Cationic Targeted release throughout time. Staphylococcus  
aureus 

PC:Chole: SA108 2.9 Cationic  Targeting, continuous-release, and degradation 
prevention 

Streptococcus  
mutans 
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DISPC: PPI109 0.1 Anionic Appropriate biofilm targeting Staphylococcus 
epidermidis 

DISPC: PPI110-111 0.1-0.22 Anionic  Directly producing and discharging oxyacids 
and hydrogen peroxide, two anti-bacterial 

agents, into the biofilm. 

Streptococcus 
gorgonian 

 
DISPC: 1,2-dipalmitoyl-snglycero-3-phosphocholine; Chole: Cholesterol, DSGPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; 

 SLA: Stearylamine; PC: Phosphatidylcholine; PPI: Phosphatidylinositol. 
 

5.1. Advantages of Lipid Nanoparticles/ Liposome 
Mediated CRISPR-Cas delivery system 

 
• This system is compatible with biology. 
• Since their structures contain neutrally charged surfaces, 

they have a long circulation time. 
• It is being able to assemble itself. 
• It is a flexible system since it can bind to phospholipid 

membranes and transfer components straight to the cell. 
• The capacity to deliver high concentrations of inhibitors 

to cells at once.  
• The liposomes are DNA-free, which helps minimize DNA 

toxicity while also increasing immunological responses, 
enabling the neutralization of biofilm-forming cells quickly. 

 
5.2. Shortcomings of Lipid Nanoparticles/ Liposome 
Mediated CRISPR-Cas delivery system70 
 
Taking account of internal and external barriers, the delivery 
of CRISPR/Cas9 using lipid nanoparticles exhibits certain 
serious drawbacks. 
• The nanoparticle becomes enclosed in the endosome 

after crossing the cell's surface. The cell will then 
immediately drive the enclosed contents via the 
lysosomal pathway, rapidly degrading all the contained 
lysosomal contents.  

• Efficiency is lower compared to other CRISPR-Cas 
systems.  

• Suppose the complex of sgRNA and Cas9 can exit the 
endosome to avoid the situations above. However, in 
that case, it must also translocate to the nucleus, which 
is again unacceptable as it is a possible point of failure 
for the system. 

 
6. ADAPTIVE LABORATORY EVOLUTION FOR 

ENHANCING PHAGE FITNESS 
 
For phage treatment to be successful, phage stability and 
efficiency are crucial. Wild phages are especially vulnerable to 
changes in temperature, solute concentration, and UV 
radiation. Adapting laboratory evolution, a strategy for 
increasing organisms' evolutionary fitness and adaptation in 
novel settings, could be the straightforward solution. This 
approach employs mutagenesis combined with selected 
environments to push strains to their limits and ensure they 
thrive under optimal conditions for development. One of the 
research used adaptive laboratory evolution to increase the 
stability of three wild-type phages at high temperatures; 
these phages were Wc4 (Myoviridae), CX5 (Cytophaga), and 
P-PSG-11 (Podoviridae). After being stored at 37 °C for 60 
days, the phages were treated at 60 °C for five cycles, and 
they showed increased stability when exposed to 60 °C for 1 
hour. The modified Phage maintained the same lytic efficiency 
and infectiousness level throughout the evolution process. 
After sequencing their whole genomes, phages were found to 
have single favourable single alterations in their tail tubular 
proteins, which allowed them to survive at higher 
temperatures112. This finding added to the reader's 

understanding of how well-adapted phages stay when stored 
at higher temperatures. Chemically accelerated viral 
evolution (CAVE) is a recently developed approach for 
speeding up the development of certain traits in 
bacteriophages. CAVE employs repeated rounds of 
mutagenesis paired with selection criteria to guide the 
progression of bacteriophages toward a specified phenotype. 
In a nutshell, CAVE consists of i) introducing mutations 
across the phage genome, (ii) infecting a host to form a pool 
of mutant Phage, (iii) applying selection criteria, and (iv) 
analyzing phage variations and cycle repetition. This study 
also tested CAVE, which was found to be an effective 
method for increasing the thermal stability of T7 
bacteriophages113.  
 
7. DIRECTED EVOLUTION TO IMPROVE PHAGE 

THERAPY 
 

Directed evolution may be used to expeditiously reach a 
predetermined objective by simulating natural selection for 
genes and the proteins they encode. However, in contrast to 
adaptive laboratory evolution, the goal of directed laboratory 
evolution is to push the protein toward enhanced 
functionality114. In a study, Mycobacteriophage (ATCC® 
11759B1TM) was employed in directed evolutionary 
research; it infects a non-pathogenic strain of 
Mycobacterium, M. smegmatis. Mycobacteriophage's lytic 
activity and infectiousness were improved by directed 
evolution in this work. In addition, the influence of inoculum 
size on phage adaptation was examined. Intriguingly, their 
results imply that smaller Phage inoculates, as opposed to 
bigger regimens, aid in obtaining higher titer, larger plaque 
size, and efficient lysis during evolution investigations. 
Furthermore, some mycobacteriophages can infect both M. 
smegmatis and M. tuberculosis, therefore the same research 
might be expanded by utilizing M. tuberculosis as a host to 
investigate the therapeutic potential of phage115 further. 
According to the latest study conducted, to overcome the 
phage resistance of the E. coli B strain REL606 and improve 
medicinal uses, researchers recently employed laboratory 
evolution on bacteriophage as proof of concept. After 28 
days of training, the phages suppressed the bacteria 1000 
times more efficiently and for 3-8 times longer than the 
progenitor strain. Interestingly, the bacteria only needed to 
undergo a single mutation in order to become resistant to 
the untrained Phage. Still, the same result required numerous 
changes in the bacterium for phages generated in a 
laboratory116. Therefore, directed evolution is a promising 
technique to boost Phage's therapeutic value and specificity. 
The next step might be to use the evolved Phage against 
clinical isolates and assess the evolved Phage's therapeutic 
potential in vivo models115,116.  
 
8. STRATEGIES TO DELIVER THERAPEUTIC 

PHAGES  
 
Bacteriophages offer enormous promise as anti-bacterial 
options in the post-antibiotic future, as demonstrated by 
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both in vitro and clinical research. For the therapy to be 
effective, the bacteriophages must be transported to the site 
of infection; otherwise, the treatment may be ineffective. To 
overcome this obstacle, a significant amount of research is 
devoted to the development of delivery techniques that will 
permit phages to reach their target location and exert their 
full potential. Numerous ways include encasing or trapping 
phages within liposomes, fibres, and hydrogels117. Liposomes 
are bilayered lipid nanostructures that are spherical and 
hollow, enabling them to transport aqueous liquids. 
Liposomal encapsulation of bacteriophages has been proven 
to protect the phages from the host environmental 
conditions, including acidic pH and degrading enzymes in the 
intestinal tract, respectively118. In one such research, 
Salmonella phages encapsulated by cationic liposomes were 
protected against pH 2.8 simulated stomach fluid. In addition, 
encapsulation has been demonstrated to increase the survival 
of bacteriophage in chicken digestive tracts118. In addition to 
its stability, liposomes' therapeutic efficacy in several in vivo 
models has been explored. For example, encapsulated 
bacteriophages are more effective than freely administered 
phages at defending broilers from Salmonella sp.118. Similarly, 
the therapeutic benefits of freely administered phages vs 
liposomal encapsulated Phages against K. pneumoniae have 
been evaluated using mouse models of burn wounds. Blood 
and other organs of mice treated with encapsulated phages 
exhibited a greater decrease in bacterial load than those 
treated with free-living phages. In addition, encapsulated 
phages had higher retention values and increased infection-
curing specificity. In addition, phages administered through 
liposomal preparation prevented the mortality of mice even 
when the therapy was delayed for 24 hours119. Similar wound 
healing outcomes were obtained in a diabetic mouse model 
infected with S. aureus120. Hydrogels have been utilized to 
create pH-responsive surface coatings for lasting catheters, 
which release phages during infection. During an infection, 
microorganisms like Proteus mirabilis infiltrate the region and 
produce a biofilm, which raises the pH. The Phage is stored 
in a lower "reservoir layer" of the hydrogel, and when the pH 
is raised, this layer is stimulated, releasing the Phage. Biofilm 
development was shown to be postponed when phages were 
encased in a pH-responsive hydrogel produced from poly 
(methyl methacrylate-co-methacrylic acid) and tested in an in 
vitro bladder model121. Hydrogel-based pH-responsive 
surface coating smart systems and thermo-responsive 
polymer-based smart systems have been developed to 
combat wound infections. These thermo-responsive 
polymers, like those typically seen during bacterial skin 
infection, can withstand low temperatures without breaking 
down but disintegrate at higher temperatures122.The phages 
might be contained in a thermoresponsive polymer and 
released gradually during infection. An example of a thermo-
responsive polymer employed as nanospheres to confine S. 
aureus phage K and applied to a nonwoven fabric for use in 
adhesive bandages is a gel matrix of allylamine copolymerized 
with "Poly-N-isopropyl-acrylamide"122. The therapeutic 
effects of phages attached to fibres have been investigated in 
addition to liposomes and hydrogels. Using phages 
immobilized on fibres for topical delivery during wound 
dressing or in bandages is a straightforward yet efficient 
method117. Electrospinning is used to create the nanofibers, 
and the bacteriophages are mixed into the liquid polymer 
beforehand. Therefore, the Phage is encased in the nanofiber 
during manufacture, making it resistant to bacteria. 
Nanofibers made from polyethene glycol and polyester urea 
have been immobilized with commercially available phage 

cocktails. Phage immobilized on nanofibers showed anti-
bacterial action against their respective hosts for up to 80 
hours after application123. A separate investigation studied the 
loading efficiency, dispersion, and release of T7 Phage from 
cellulose microfibers immobilized by electrostatic 
interactions, non-specific adsorption, and protein–ligand 
binding. Electrostatic interactions resulted in 15–25% phage 
loadings adjusted to the baseline phage titer, but non-specific 
adsorption and protein–ligand interaction was insignificant. In 
addition, slow phage release from cellulose microfibers was 
demonstrated when phages were adhered to utilizing 
electrostatic interactions as an immobilization technique124. 
Stability is a big obstacle when encapsulating Phage on fibres. 
During the electrospinning procedure, the polymer and 
Phage are subjected to high voltage, which causes fast 
evaporation of water and changes in the osmotic state, 
resulting in drying of the Phage and decreased viability during 
storage. It has been shown that the inclusion of magnesium 
salts and excipients such as trehalose improves the Phage's 
survivability during the electrospinning and storage123. 
 
9. BIOFILM INHIBITION BY ACTINOBACTERIA 

 
In terms of microbial diversity and abundance, actinobacteria 
are among the most impressive groups. Bacteria can be 
either anaerobic or aerobic, mobile or immobile, spore-
forming or spore-free. They have a high ratio of guanine to 
cytosine and are Gram-positive. It was always thought that 
these bacteria only existed in soil, but modern research has 
shown that they permeate practically every biome125. 
Antimicrobial, antiviral, and anticancer compounds are all 
secondary metabolites produced by actinobacterial species. 
Seventy per cent of the known bioactive chemicals found in 
nature are now used in human medicine. Studies of the 
Streptomyces sp. genome have uncovered over fifty 
biosynthetic gene clusters, indicating the organism's potential 
for manufacturing new antibiotics. Although Streptomyces 
has received much credit for developing the antibiotics now 
in use, the possibility of other actinobacterial species should 
be considered. Bioactives have been shown to inhibit biofilm 
formation in several bacterial species—Casuarina spp. Root 
nodules in Tamil Nadu, India, are the source of the 
mycelium-forming actinobacterium known as Frankia 
casuarinae. At a dosage of 62.5 g/mL, the secondary 
metabolites isolated from F. casuarina suppressed biofilm 
development in Candida sp. by 81%; at a 125 g/mL 
concentration, they did the same in Pseudomonas. Against 
Pseudomonas and Candida sp. biofilm, the unique findings 
showed that F. casuarinae generate anti-biofilm compounds126. 
Actinobacteria are a promising approach for the discovery of 
novel anti-biofilm agents, as evidenced by the fact that 
secondary metabolites extracted from Streptomyces 
californicus ADR1 have inhibited 90 percent biofilm formation 
of S. aureus ATCC 29213 and MRSA ATCC 43300 at 
concentrations of 1.80 g/mL and 4.92 g/mL, respectively127 
 
10. APPLICATIONS AND ADVANTAGES OF THE 

CRISPR/CAS SYSTEM 
 
The CRISPR-cas9 gene controls numerous genes linked to 
virulence. CRISPR-Cas systems have been successfully 
modified to target virulence factors and antibiotic-resistant 
genes in bacteria. They represent an appealing option for 
both sequence-specific and programmable antimicrobials128. 
This system controls transcription and bacterial pathogenicity 
by regulating endogenous mechanisms. For example, a 
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possible human disease-causing pathogen, Francisella 
novicida129, reproduces intracellularly by evading the host 
immune system. When propagated by phage capsids in vitro, 
they can successfully eradicate a target population, and when 
transmitted in vivo, they can diminish the colonization of a 
target population. Therefore, it may be possible to 
desensitize resistant bacteria to an antibiotic by curing 
plasmids that contain resistance genes. To introduce these 
approaches to the clinic, particular indications and treatment 
plans would need to be established. Based on their sequence, 
CRISPR-based antimicrobials have the distinct advantage of 
preventing the production of bacterial biofilms128. The Cas9 
protein can induce chromosomal double-strand breaks in 
bacteria, leading to a failure of the replication fork. 
Ultimately, cell death inhibits biofilms' creation and favours 
the eradication of infections. This technique is practical and 
easy to use. This may prove effective in instances where it is 
advantageous to eradicate only a small group of bacteria 
within a population, something that would be challenging to 
perform using present tactics. Consequently, the CRISPR-Cas 
method, a recently created approach, offers a toolkit in the 
battle against lethal pathogenic diseases. 
 
11. LIMITATIONS OF THE CRISPR/CAS SYSTEM 
 
Despite the immense potential of the CRISPR/Cas9 system 
for gene editing, there are still some substantial challenges to 
be solved. 
• The mRNA, plasmid, and Cas9 protein are all giant 

molecules with distinct charges, making it possible to 
package them all into a single vector. However, it is 
challenging to produce additional vectors as a result. 
Additionally, although typical vectors are designed to be 
positively charged, native Cas9 protein is positively 
charged, which prevents the electrostatic encapsulation of 
Cas9 protein103. 

• It has larger protein sizes, which reduces the effectiveness 
of its editing. 

• Expensive approach. 
• Takes up a lot of time. 
• Resource-intensive. 
• A CRISPR/Cas9 system component may cause the host's 

immune system to respond. 
• Numerous, random mutations are induced at non-specific 

sites in the genome. 
• This could result in off-target mutations. 
• The Cas9-induced double-strand break activates DNA 

repair machinery, which controls the biochemical process 
by which DNA fragments are implanted (e.g., cDNAs). 
However, as inserting DNA fragments into the genome is 
outside the purview of the DNA repair machinery, 
targeted alleles typically carry out further changes such as 
deletions, partial or multiple targeting vector integrations, 
and even duplications130-131. 

 
12. FUTURE DIRECTIONS 
 
Although prokaryotes are the original home of CRISPR-Cas 
systems, advances in CRISPR technology have primarily 
focused on eukaryotes. Regardless of whether the underlying 
objectives are to expand current applications or to introduce 
wholly new ones, progress in eukaryotes can serve as a 
model for similar advancements in prokaryotes. Before 
CRISPR-Cas can be utilized to target microbial communities, 
many challenges must be solved. To fully use this 
technology's potential to reduce clinical and environmental 

problems, choosing an effective distribution strategy will be 
essential. The genes' effectiveness would significantly rise if 
CRISPR-Cas constructs could be easily reprogrammed to 
target specific genes of interest. Future research is necessary 
to examine and improve the expansion of CRISPR-Cas in 
more useful microbial communities and to comprehend the 
dangers connected with this technology. To enable more 
precise alterations to the genome, new technologies are 
required. Eliminating random output would guarantee the 
technology's success and its therapeutic impact. Therefore, 
solving more complicated issues will need specific 
adjustments to how CRISPR may evolve. 
 
13. CONCLUSION 
 
The rapid emergence of antibiotic-resistant bacteria has 
made it more challenging to combat infectious diseases and 
develop new medications. This is frequently due to their 
capacity to build biofilms. The CRISPR-Cas system is 
acknowledged as one of the most current methods for 
controlling antibiotic-resistant strains since it is a bacterial 
adaptive immune system. The potential of CRISPR gene 
editing to alter any genomic sequence has created many 
opportunities for biological study and medical applications. 
Making the best delivery methods is necessary for continued 
advancements in gene editing. Conjugative CRISPR/Cas 
systems and phage-based delivery systems are potential viral 
delivery methods. The phage-based CRISPR/Cas technology 
does, however, have significant drawbacks. These limitations 
may be overcome by recent developments in phage genome 
engineering, which include expanding the host range of 
phages to support phage therapy and disrupting the 
immunodominant epitope of the phage capsid to reduce the 
immune response to phages and, as a result, produce precise 
variants against infectious diseases. The absence of insertional 
mistakes and the capacity to carefully control the dosage, 
duration, and specificity of delivery are just two of the many 
benefits of non-viral administration. Using liposomal delivery 
systems would create fresh opportunities for innovative 
research to curb different diseases' capacity to produce 
biofilms. The various examples provided in the "Delivery 
System" portion of this paper demonstrate the vast 
therapeutic potential of the CRISPR/Cas9 system. Therefore, 
CRISPR is, without a doubt the most recent genetic 
engineering technique. 
 
14. LIST OF ABBREVIATIONS 
 
DISPC: 1,2-dipalmitoyl-sn glycerol-3-phosphocholine; Chole: 
Cholesterol, DSGPC: 1,2-stearoyl-sn-glycerol-3-
phosphocholine; SLA: Stearylamine; PC: Phosphatidylcholine; 
PPI: Phosphatidylinositol; CRISPR: Clustered and Regularly 
Interspersed Short Palindromic Repeats; Cas: CRISPR-
associated.  
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