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Abstract: This review focuses on different techniques used in the in-silico drug design, such as molecular modeling, molecular docking, 
pharmacophore mapping, QSAR, and more, and also highlights and looks at how these techniques are being used to create new potential anticancer 
drugs for their effective cancer treatments. Most of the article studies focus on In-silico approaches only but rarely on the In-silico approach used to 
develop anticancer drugs with effective targets. Cancer, which is caused by pathophysiological changes in the normal process of cell division, has 
become a serious disorder that kills a lot of people every year all over the world. Recently, more than 19.3 million (19,300,000) new instances of 
cancer were identified and reported; based on the available data, this will result in almost 10 million fatalities in 2020. The necessity and desire for 
powerful medications to treat various malignancies have been sparked by the persistently rising occurrences of cancer worldwide, resulting in millions 
of deaths each year. Developing new anticancer drugs is a high priority for researchers and medical professionals, and designing these anticancer 
drugs is challenging, expensive, and time-consuming. In-silico drug design, also known as computer-aided drug discovery/design (CADD) approaches, 
have been created to get around these restrictions and manage massive amounts of emerging data. It is possible to use computational tools to aid in 
the design of experiments and, more crucially, to clarify the links between structure and activity that underlie drug discovery and lead optimization 
techniques. To design effective new drugs, one should understand the molecular processes that cause cancer on the molecular level. In Silicodrug 
design is a powerful tool for understanding these molecular processes and developing new and effective anticancer drugs. 
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1. INTRODUCTION 
 
One of the biggest causes of morbidity and mortality in the 
globe is cancer. Based on the impacted cell type, there are 
approximately 200 different forms of cancer.1 The Food and 
Drug Administration (FDA) authorized drugs, causes of each 
type of cancer, treatments, and other information are all 
provided in the National Cancer Institute (NCI) database.1 The 
most likely cancers in 2022, according to NCI reports, will be 
melanoma of the skin, non-Hodgkin lymphoma, pancreatic 
cancer, prostate cancer, thyroid cancer, bladder cancer, breast 
cancer, colon and rectum cancer, endometrial cancer, kidney 
and renal pelvis cancer, leukemia, lung and bronchus cancer, 
and thyroid cancer. At first, cancer was thought to be caused 
by uncontrolled cell proliferation and division. Therefore, 
finding antiproliferative drugs was the focus of all research 
efforts. In contrast to slowly developing solid tumors, the 
success rates tend to be higher in lymphoid malignancies.2 The 
researchers modified the pre-screening and screening 
procedures to account for all the various cell lines and cancer 
types. The prevention, identification, and treatment of cancer 
are all receiving significant financial support on a global scale. 
The development of anticancer agents is the main focus of 
several pharmaceutical industries and governmental and non-
governmental organizations, including the British Cancer 
Research Campaign (CRC), the European Organization for 
Research and Treatment of Cancer (EORTC), and the US 
National Cancer Institute (NCI). The search for anticancer 
drugs began in 1937 by screening more than 3000 substances 
in a mouse S37 model.3,4 Cytotoxic compounds, which date 
back to the 1950s, was recognized as the first generation of 
anticancer medications. In the drug development, substances 
with strong cytotoxic or cytostatic activity on cancer cell lines 
and inhibited tumor growth in murine tumor allografts or 
xenografts were chosen.5 Most cytotoxic substances have 
been discovered by accident or purposefully targeting 
biological pathways important for cell division. The first 
anticancer medication created in 1949 and approved by the 
FDA was mechlorethamine (Mustargen), and this drug is highly 
producing mutagenic analogs of mustard gases. Since the 
1990s, anticancer medication development has accelerated. 
More than 190 oncology treatments have received FDA 
approval in the last two decades. The FDA data indicates that 
a total of seven oncology medications have already been 
approved for use in 2016. (until April 25).6,7 Additionally, it has 
been stated that the FDA has authorized nearly 300 indications 
for oncology medications, covering an average of 4.4 
indications annually. Recent years have seen many new 
oncology drug approvals, giving patients new therapy 
alternatives. Oncology, though there is a robust level of 
pipeline activity, is still a difficult field for research and 
development.  Anticancer medication discovery and design are 
challenging, expensive, and time-consuming processes. In-silico 
drug design, also known as computer-aided drug 
discovery/design (CADD) approaches, have been created to 

get around these restrictions and manage massive amounts of 
emerging data.7,8 It is possible to use computational tools to aid 
in designing experiments and, more crucially, to clarify the 
links between structure and activity that underlie drug 
discovery and lead optimization techniques. The most widely 
used CADD techniques are those based on structure and 
ligand. Even more remarkable is the assimilation that these two 
complementary techniques provide. The rapid development of 
new anticancer therapies shows significant potential when 
combined with experimental and computational methods.8 In 
Silicodrug design, homology modeling, molecular docking, and 
pharmacophore mapping are all molecular modeling 
techniques used to model and study the 3D structure of 
molecules. Homology modeling is a method of predicting the 
3D structure of a molecule based on an existing sequence of 
related molecules. Molecular docking is a method of predicting 
the affinity of a molecule by understanding how it fits into a 
target molecule, especially an anticancer target.9,10,11 
Pharmacophore mapping is a method of understanding the 
requirements of a molecule to interact with a biological target, 
particularly cancer. These techniques are used in many areas 
of molecular research, such as drug discovery, protein 
structure prediction, and analysis. Together, they provide 
important insights into the structure and function of 
molecules, which are essential for developing new drugs and 
understanding their effects. They are also used in structure-
based drug design and quantitative structure-activity 
relationships (QSAR) studies12. Another method indicating 
structure-based methods is a fragment-based drug design; the 
discovery of fragments or low molecular weight compounds 
that typically bind to the target of interest with limited affinity 
is the first step in the fragment-based drug design process. The 
fragments that produce high-quality contacts are further 
refined to create compounds with high affinity and selectivity. 
Most review studies focus on In-silico approaches only but 
rarely on In-silico approaches for anticancer drug 
development. Hence, in this review, we will explore the 
different techniques used in Silicodrug design, such as 
molecular modeling, molecular docking, pharmacophore 
mapping, QSAR, and more, and explore current 
macromolecular targets for anticancer drugs and highlights to 
look at how these techniques are being used to create new 
and effective treatments for cancer. Any medication that 
successfully treats malignant or cancerous disease is called an 
anticancer drug, often known as an antineoplastic drug13. 
Alkylating agents, antimetabolites, natural products, and 
hormones are a few of the main classifications of anticancer 
medications shown in Figure 1 Shown Figure-1. Moreover, 
various medications that do not belong to such classes yet 
have anticancer action are utilized to treat malignant diseases. 
Although it is more true to say that chemotherapy refers to 
the use of chemical substances to treat disease in general, 
chemotherapy is usually used synonymously with anticancer 
medications. 
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Fig 1: Flowchart for Anticancer drug classification13,14 

 
Cancer cells become resistant to anticancer medications when 
we use them for a long time14. The following is a description 
of the mechanism through which this resistance arises: 
 
1. A decrease in the number of drugs that cancer cells uptake: 
Cancer cells change how drugs enter their cells, lowering drug 
uptake. Consider the drug methotrexate14. 
2. An increase in medication evacuated by cancer cells: Cancer 
cells produce more reflux proteins, such as glycoprotein 
transporters, that expel medication from the cell. Vinblastine, 
Doxorubicin, Bleomycin, and Etoposide are a few examples 14. 
3. A decrease in or change in the target molecule's sensitivity: 
The medicine uses a target molecule to pinpoint the cells in 
the body. Sometimes cancer cells alter these target molecules 
structurally or reduce their production so that medications do 
not recognize them. Take methotrexate, mercaptopurine, and 
doxorubicin as examples. 
4. Cells' ability to repair DNA damage by producing more 
DNA repair enzymes: Several drugs function by causing DNA 
damage to cells. The medication loses its effectiveness when 
cancer cells make additional DNA repair enzymes. Alkylating 
agents, for instance, lose their effectiveness over time when 
used extensively14. 
 
A significant problem in cancer therapy is the highly 
complicated nature of the disease and the non-specificity of 
anti-cancer medications. The field of drug discovery in cancer 
research has undergone a radical transformation thanks to the 
development of high-speed processing units and advanced 
molecular modeling software. This review focuses on the value 
and most recent developments in Silicomodeling for creating 
new, effective anti-cancer medications. Although in 
Silicotechnologies have revolutionized the development and 
design of small molecule anti-cancer therapies, difficulties, 
including acquired resistance and intra-tumor heterogeneity, 
still need to be addressed. Moreover, the "Multi Target Drug 
Ligands" (MTDL) method for drug creation for the treatment 
of cancer is replacing the "One Ligand-One Target" strategy14. 
In-silico drug design, also known as computer-aided drug 
discovery/design (CADD) techniques, was developed to 
overcome these limitations and handle enormous volumes of 
developing novel anticancer drugs. It is possible to employ 

computational tools to support experiment design and, more 
importantly, to elucidate the relationships between structure 
and activity that underlie lead optimization and drug discovery 
methods. Understanding the molecular mechanisms that lead 
to cancer at the molecular level is necessary for developing 
novel treatments with high efficacy. A useful method for 
comprehending these molecular processes and creating novel, 
potent anticancer medications by using in Silicodrug design 
techniques and tools. Hence, the present review focused on 
developing anticancer drugs by utilizing the techniques and 
tools of in-silico drug design. 
 
2. COMPUTER-AIDED DRUG DESIGN OR IN-

SILICO DRUG DESIGN 
 
A large number of proteins have been solved either by X-ray 
or by nuclear magnetic resonance (NMR) spectroscopy and 
are available at open-access protein databases 
(http://www.rcsb.org) since the invention of the X-ray 
diffraction to reveal the chemical composition and three-
dimensional (3D) geometry of a small organic molecule in 
19327. With the aid of this knowledge, scientists can now 
comprehend and describe various physiological processes that 
depend on interactions between proteins or between proteins 
and tiny molecules (ligands), as in the instance of drug-target 
binding15. Max Perutz and John Kendrew received the Nobel 
Prize in Chemistry in 1962 for figuring out the first high-
resolution protein structure (myoglobin). Up until the most 
recent Nobel Prize in Chemistry (2012), which was given 
jointly to Brian Kobilka and Robert Lefkowitz for their 
structural and functional studies on G-protein-coupled 
receptors, several prior works in the crystallographic 
determination of protein structure had received the honor 
(GPCRs) 15.The search for hit molecules that may act as drugs 
have changed significantly as a result of the chemical makeup 
and 3D relative positions of each atom in a target: from a blind 
screening process that hoped to find molecular hits primarily 
by fate to an approach frequently referred to as "rational" drug 
discovery and design15. The first medicine to be optimized 
using structural data was the angiotensin-converting enzyme 
(ACE) inhibitor Capoten (captopril), developed in the 1980s. 
Nelfinavir mesylate (Viracept), an HIV protease inhibitor, was 
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the first medicine authorized for the US market whose design 
was entirely determined by the structure of the target. These 
findings were just the start of a frenzied career spent looking 
for new, quicker, and less expensive approaches and 
computational algorithms and procedures for creating and 
designing new medications. Also, to sample more compounds 
from the target (screening procedure) in less time and to gain 
important knowledge and experience beforehand to create a 
library of chemical compounds for subsequent screening more 
precisely. The relevant revolution occurred when 
computational models based on basic physical laws could 
replicate the interactions between organic molecules, atom by 
atom, following the high-resolution solution of protein 
structures. The van der Waals radii of the atoms, the 
parameters of covalent bonds, torsions, and dihedral angles 
were taken into account in addition to the 3D structure of a 
molecule15,16. With computational tools like powerful 
workstations or supercomputers, scientists may now simulate 
or conduct in Silicoexperiments to simulate genuine systems. 
This development laid the foundation for a more rational 
approach to the search for effective, selective medications 
with fewer side effects while also making the procedure more 
affordable and efficient 15,16. Nowadays, these methods allow 
quicker and less expensive screening of more chemicals 
(virtual screening). Researchers have advanced in Silicothanks 
to the Computer-Aided Drug Discovery and Design 
(CADDD) era, where computer simulations of chemical 
systems have sparked the potential in this discipline. Among 
these developments include computer models to resolve 3D 
structures, the optimization and design of new compounds, 
and the knowledge of the characterization of the atomic 
mechanisms of earlier medications or naturally occurring 
molecules. Breaking the mold of orthosteric medications 
(drugs binding to the target at a specific active site) has also 
led to the discovery of allosteric modulators and bitopic 
pharmaceuticals in the search for therapeutic compounds 15,16. 

 
3. CURRENT MACROMOLECULAR TARGET 

FOR ANTICANCER DRUGS 
 
Medications or other substances that specifically influence the 
molecular targets involved in the onset, progression, and 
dissemination of a particular tumor are known as molecularly 
targeted anticancer therapy. Contrarily, most conventional 
chemotherapeutics operate on both malignant and healthy 
cells that are rapidly multiplying.17 Target anticancer 
medications function cytostatically rather than cytotoxically 
like traditional chemotherapeutics since they are created with 
a specific goal. More than 300 biological molecular targets have 
currently been discovered. Receptor proteins, signal 
transduction proteins, mRNA thread matrix synthesis proteins 
engaging in neoplastic transformation, cell cycle control 
proteins, and functional and structural proteins are just a few 
of the proteins involved in cellular metabolism. Epithelial 
growth factor receptor (EGFR), platelet-derived growth factor 
receptor (PDGFR), and vascular endothelial growth factor 
receptor are the receptor proteins that anticancer 
medications now in use target (VEGFR).17 Target anticancer 
medications may impact intracellular or extracellular receptor 
domains (antibodies) (tyrosine kinase inhibitors). Another 
molecular target of anticancer medications is the inhibition of 

the mRNA thread carrying data about the shape of oncogenes 
(signal transduction proteins).17 Clinical trials are being 
conducted for this kind of therapy, also known as antisense 
therapy. The transition to the following phase of the cycle is 
typically impeded when the synthesis of genetic material is 
interrupted. Cyclines and cyclin-dependent kinases are the 
main proteins causing the blockage (CDK). Clinical trials are 
concentrated on using organic and synthetic compounds that 
can block different CDKs.17 
 
3.1. Kinases as Targets for Developing Anticancer Drugs 
 
The broad family of enzymes known as kinases is responsible 
for transferring the high-energy phosphate group from 
adenosine triphosphate (ATP) to a variety of substrates, 
including proteins, lipids, carbohydrates, nucleic acids, and 
serine-threonine-specific kinases. Several physiological 
reactions are brought on by the substrate's phosphorylation, 
which modifies its activity and interactions with other 
molecules. Protein kinases are important for practically all 
aspects of cellular function, including cell development, 
proliferation, apoptosis, and signal transduction. It is believed 
that 50% of all proteins are constantly undergoing reversible 
phosphorylation and dephosphorylation 17,18. Several 
disorders, including cancer, have protein kinases that are 
dysregulated, overexpressed or have mutations. Over the past 
20 years, these protein kinases have been widely studied as 
potential targets for creating new antineoplastic medicines. 
Almost 200 potential inhibitors are undergoing various stages 
of clinical studies globally, with 53 kinase inhibitors (KIs) 
already licensed by the FDA (FDA, 2019) were shown in 
Figure 2. The majority of the medications that have been 
approved work against different types of cancer when taken 
orally17,18.  Several protein kinases frequently elevated in 
cancer cells are the focus of PTK inhibitors. The key target for 
medications like erlotinib and gefitinib is the epidermal growth 
factor receptor (EGFR), a member of the ErbB family of 
tyrosine kinase receptors that are overexpressed or mutated 
in non-small cell lung cancer (Bethune et al., 2010)17-19. 
Lapatinib and neratinib bind to the intracellular domain of 
HER2/neu, a different member of the ErbB tyrosine kinases 
that is increased in about 20–30% of breast tumors . Imatinib 
has been linked to the pathogenesis of nearly all cases of 
chronic myeloid leukemia (CML) and acute lymphoblastic 
leukemia with the Philadelphia chromosome due to its activity 
against non-receptor breakpoint cluster region (Bcr)-Abelson 
leukemia virus (Abl) tyrosine kinase. Imatinib has been 
approved for this indication even though it is a relatively 
specific Bcr-Abl inhibitor and inhibits the CD117 tyrosine 
kinase linked to gastrointestinal stromal tumors. The tyrosine 
kinase domain of the vascular endothelial growth factor family 
of receptors (VEGFR) can activate signaling pathways that 
control cell survival, proliferation, and the development of 
tumor angiogenesis. Lenvatinib, sorafenib, and vandetanib are 
the VEGFR-targeting medications widely used to treat thyroid 
cancer. BRAF is a serine/threonine protein kinase targeted by 
vemurafenib, dabrafenib, and encorafenib. About 50–60% of 
cutaneous melanomas express this mutation, which results in 
ongoing activation of the mitogen-activated protein kinase 
(MAPK) pathway and unchecked proliferation of cancer cells. 
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Fig 2: Chemical Structures of Clinically Approved PTK-Inhibitors17,18,19. 

 
4. DRUG REPOSITIONING 
 
Pharmaceutical companies spend around $2.6 billion 
developing a drug through market approval. Drug 
repositioning identifies new indications for known drugs to 
minimize risk and development time. Drug repositioning 
moves experimental or approved drugs to new indications; 
there are several examples of repositioning success stories, 
such as sildenafil, which was originally developed for heart 
disease and was repurposed for erectile dysfunction, the 
sedative thalidomide, which is now approved for the treatment 
of multiple myeloma and leprosy20, or the cytotoxic anti-
cancer agent gemcitabine, which was originally developed as 
an antiviral 20. Computational approaches have been applied to 
the drug- repositioning pipeline. In Silicodrug target 
identification, which involves numerous distinct algorithms for 
identifying disease-associated genes and proteins, is the first 
step in the drug discovery pipeline (Liu et al., 2010)67. Reverse 
docking, first proposed in 2001, refers to the computational 
docking of a specific small molecule of interest to a protein 
structure database (Chen, Zhi, 2001)20.  
 
4.1. Activity Based Vs. Drug Repositioning 
 
Several examples of successful drug repositioning have drawn 
attention to the existing drug market's potential for off-target 
effects that could help treat diseases like cancer. As existing 
medications have already been administered to humans, they 
have well-established dosage regimens, acceptable 
pharmacokinetics (PK), pharmacodynamics (PD), and 
manageable side effects, making them valuable sources for 
developing novel anticancer medications. The Johns Hopkins 
Drug Library (JHDL), a novel project to compile a library of 
pre-existing medications, was introduced in the early 
2000s20,21. Around 2,200 of JHDL's medications have received 
FDA approval in the US or from international counterparts, 
and about 800 unapproved drug candidates have begun various 

stages of human clinical trials. We point out that the NCGC 
Pharmaceutical Collection (NPC), recently developed by the 
NIH Chemical Genomics Center (NCGC), contains 2,400 
small molecular entities that have received clinical use approval 
from the US Food and Drug Administration (FDA), the 
European Medicines Agency (EMA), the Japan National Health 
Insurance Agency (NHI), and the Health Canada (HC)10, 11. 
These are just some of the clinical medication collections that 
are now offered commercially. These clinical drug collections 
have proven to help identify novel uses for already-approved 
medications 20,21. The use of actual medications for screening 
is referred to as "activity-based drug repositioning" in this 
review. Comparatively, "in Silicodrug repositioning" uses 
open-access databases and bioinformatics tools to find 
interaction networks between medications and protein targets 
21 comprehensively. Due to the development of bioinformatics 
and computational science over the past few decades, a wealth 
of knowledge on the structure of proteins and 
pharmacophores has been gathered, making the latter method 
successful. Most pharmaceutical firms have previously adapted 
in Silicodrug development models from other chemical 
domains. In Silicomedication repositioning, a potentially potent 
approach, offers some benefits over activity-based drug 
repositioning, including faster processing times and lower 
costs. Due to the need for high-resolution structural 
information on targets, it does have significant drawbacks. 
When a screen does not include protein targets, additional 
information such as disease/phenotype details or drug-gene 
expression patterns are needed. In contrast, protein target-
based and cell/organism-based screens can be used in activity-
based medication repositioning without needing a database or 
structural knowledge about the target proteins. Thus, activity-
based and in Silicodrug repositioning constitute two distinct 
and complimentary methods for discovering novel drugs 
(Shown Table 1) 20,21. The various tools used for drug 
repositioning are shown in Table 2 20,21. 
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Table-1: Activity-Based and In-silico Approaches for the Development of Drug-Repositioning for  
Anticancer Drug 

Approaches Pros Cons 
Activity Based Drug-

Repositioning 
No limitation to the screening     
of target-based and cell-based 

assays 
Easy to validate screening hits 

Lower rate of false positive hits 
during the screening 

Time and labor efficient 
 

Requires an entire collection of existing drugs 
Need to develop a screening assay 

In-silico Drug 
Repositioning 

Which executes Time and labor 
efficient 

 
No need for an entire collection 

of existing drugs 
 

No need to develop a screening 
assay 

Limitation for target-based and cell-based screenings (requires 
structural information of target proteins and drug-induced 

cell/disease phenotype information) 
 

Higher rate of false positive hits during the screening 

 

Table-2: Tools to be used for Reverse Docking for Drug Repositioning 
S.No Tools used for Reverse 

Docking for Drug 
Repurposing 

Description 

1. SurflexDock A program designed to predict interactions between a target protein and compounds 
from a database by fitting them together with their surfaces to create plausible 

complexes. 
2. Raccoon2 Tool for virtual reverse screening providing support for database queries along with 

feature enrichment analysis capabilities 
3. SybylX Suite Includes three modules designed specifically for virtual reverse screening: High 

Throughput Searching (HTS) module, Lead Optimization (LO) module, and Super 
Screening (SS) module 

4. Glide XP A module of Schrödinger Suite optimized specifically for reverse virtual screening 
scenarios involving thousands or millions of compounds through highly parallelized 

searches executed on GPUs or CPUs clusters. 
5. ICM Explorer Integrated into Accelrys Discovery Studio software suite, which includes, among 

others, a de novo library building tool focused on synthesis protocols design 
automation features.; - SYBYL X by Tripos is an advanced Software Tool used in 

Reverse Docking Studies 
6. AutoDock Vina Reverse docking software 

 
5. TYPES OF IN-SILICO DRUG DESIGN 
 
The phrase "in Silicodrug design" refers to "computer-aided 
molecular design," which means that pharmaceutical drugs are 
rationally designed or discovered utilizing a wide range of 
computational techniques. Recently, there has been a 
noticeable increase in the use of in-silico chemistry and 
molecular modeling for computer-aided drug design fields of 
nanotechnology, molecular biology, biochemistry, etc., all use 
in-silico drug creation techniques22. The fundamental 
advantage of in-silico drug design is that it makes medication 
research and development more affordable. This creative 
process of discovering novel pharmaceuticals based on 
understanding a biological target is known as drug design, 
sometimes known as rational drug design or simply rational 
design. A protein, for example, is a common example of a 
biomolecule whose function is activated or inhibited by the 
medicine, which benefits the patient therapeutically. In its most 
basic sense, drug design creates compounds that interact with 
and bind to biomolecular targets that are complementary to 
one another in shape and charge. Computer modeling 
methods are commonly but only sometimes used in drug 
design22. Computer-aided drug design is another name for this 

kind of modeling. The term "structure-based drug design" 
refers to drug development based on understanding the 
biomolecular target's three-dimensional structure. In addition 
to small molecules, biopharmaceuticals, including peptides and 
therapeutic antibodies, are a growingly significant class of 
medications. Computational techniques have also been 
developed to enhance the affinities, selectivities, and stabilities 
of these protein-based therapeutics22,23. In Silicomethods 
Shown in Figure-324 are classified into 1) Structure-Based Drug 
Design, which includes Molecular Modelling and Homology 
Modelling, Molecular Docking, Pharmacophore generation and 
mapping, and Molecular Dynamic Simulations., Integrated 
methods and In-silico target prediction 2) Ligand Based Drug 
Design, which includes Quantitative Structure-Activity 
Relationship (QSAR) Studies, fragment based-descriptors,  
Artificial Intelligence Based Drug Design, Virtual Screening, 
and High-throughput screening (HTS)-Virtual Screening. And 
Lead optimizations 3) Multi-Targeted Drug Design strategies 

22-24. A critical molecule participating in a certain metabolic or 
signaling pathway linked to a particular disease condition or 
pathology or to the infectivity or survival of a microbial 
pathogen is known as a biomolecular target (most frequently 
a protein or a nucleic acid). Prospective pharmacological 
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targets must, by definition, be capable of treating or preventing 
disease. Small compounds may occasionally be made to either 
boost or inhibit the target function in a particular disease-
modifying pathway. Small compounds complementary to the 
target's binding site will be created, such as receptor agonists, 
antagonists, inverse agonists, or modulators; enzyme 
activators or inhibitors; or ion channel openers or blockers22-

24. As medication interactions with off-target molecules may 
result in negative side effects, small molecules (drugs) can be 
created so as not to affect any other significant "off-target" 

molecules (commonly referred to as anti-targets). Closely 
related targets discovered by sequence homology have the 
highest likelihood of cross-reactivity and, thus, the biggest side 
effect potential because of similarity in binding sites. Drugs are 
typically small organic molecules made by chemical synthesis. 
However, biopolymer-based medications 
(biopharmaceuticals) made through biological processes are 
more widespread. Moreover, therapeutic uses for mRNA-
based gene silencing technologies are possible 22-24. 

 
 

 
Fig 3: Types and Methods of In-silico Drug Design24 

 

6. STRUCTURE-BASED DRUG DESIGN 
 
Structure-based drug design involves using 3D models of 
biological systems to predict which chemical structures would 
best bind to their targets, making them more likely to be 
successful as drug candidates. By analyzing the structures of 
proteins, nucleic acids, and other cellular components at 
atomic resolution, it is possible to construct 3D models of 
how the target interacts with ligands.24 These 3D models can 
then be used to virtually screen databases of chemical 

compounds to identify candidates with optimal binding 
affinities. Structure-based drug design uses 3D computer 
modeling to simulate interactions between proteins and small 
molecules. It seeks to identify molecules with the best fit in 
terms of size and shape, charge, hydrophobicity, and other 
properties that enable them to interact effectively with target 
proteins. The most effective hits from these simulations can 
be further explored as leads for developing new cancer 
therapies24. 
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6.1. Molecular Modelling and Homology Model 
 
Molecular and homology modeling are two computer-assisted 
methods to develop new anticancer drugs. Molecular 
modeling, also known as molecular simulation, is a 
computational method that uses mathematical algorithms, 
physical laws, and empirical data to generate 3D images of 
molecules.25 This simulation can identify suitable drug 
candidates and predict their properties, such as stability and 
solubility. Homology modeling, on the other hand, is a 
technique used to reproduce the 3-dimensional structure of 
proteins accurately. Homology models use existing data of 
known proteins to create structures of unknown proteins. 
This method can generate 3D structures of target proteins to 
identify suitable binding sites for drug molecules. Both 
molecular modeling and homology modeling can be used in 
developing new drugs for treating various diseases, including 
cancer. Another method of Molecular modeling used for 
Protein Modeling involves building 3D models of proteins 
based on the amino acid sequence, which is then used to study 
the protein's interactions with different compounds and 
drugs.25 
 
6.2. Molecular Docking 
 
Molecular docking is an in-silico technique that allows for the 
simulation of protein-ligand interactions and the prediction of 

binding modes and affinities between ligands and a target 
receptor.26 This technique, including anticancer drugs, is 
widely used to aid drug discovery. 3D structures of both the 
receptor and the potential ligands are modeled during the 
process. Molecular docking is based on finding optimal fit by 
exploring all possible orientations and positions of the ligand 
molecule relative to the target molecule (receptor) shown in 
Figure 4-5. Once identified, the docking results provide 
information about key interactions between receptor and 
ligand, such as hydrogen bonding or Van der Waals forces. It 
can then be used to guide further design optimization or help 
elucidate mechanisms of action. Molecular docking is an 
essential step in drug design, involving ligands' virtual binding 
to receptors. Recent developments in this area have 
revolutionized the field of drug discovery, allowing for more 
rapid and accurate drug design. To take advantage of these 
advancements, a revolutionary study of molecular docking 
techniques was conducted to assess their ability to identify 
small molecule ligands that could be used to treat cancer.  
Another docking method enabled by in-silico docking uses a 
computer program to search through databases (Shown 
Table-3) of compounds and determine which compounds 
could have the highest potential binding affinity to the desired 
target protein or enzyme based on their structural 
characteristics.26 

 

 

 
Fig 4: Illustration of Molecular Docking 

 
 

 
Fig 5 Flowchart for the Docking and Scoring Features 
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Table-3: Tools Used for Molecular Docking 
S.No Tools Used for 

Molecular 
Docking  

 
Description 

1. Autodock Vina It's one of the fastest and most widely used open-source docking engines. It is a turnkey 
computational docking program based on a simple scoring function and quick gradient-

optimization conformational search. 
2. Maestro Suite  It's a streamlined portal for structural visualization and access to advanced predictive 

computational modeling and machine-learning workflows for small molecule drug discovery. 
3. PLANTS Parallel Molecular Docking using PLANTS software 
4. Glide 

 
 
 
 

Glide offers the full range of speed vs. accuracy options, from the HTVS (high-throughput virtual 
screening) mode for efficiently enriching million compound libraries to the SP (standard precision) 
mode for reliably docking tens to hundreds of thousands of ligands with high accuracy to the XP 

(extra precision) mode where further elimination of false positives is accomplished by more 
extensive sampling and advanced scoring, resulting in even higher enrichment. 

5. OpenEye Omega OMEGA was designed with the large libraries required for computer-aided drug design. It 
generates multi-conformer structure databases with high speed and reliability. OMEGA performs 
rapid conformational expansion of drug-like molecules, yielding a throughput of tens of thousands 

of compounds per day per processor. 
6. SMINA Docking with Smina is done from the command line and is very easy to script, thanks to the 

possibility of calculating the box from an existing ligand. The –autobox_ligand and –autobox_add 
switches define a docking box that is 8Å greater than the ligand specified. The –exhaustiveness 16 
switch tells Smina to spend more time finding the best scoring binding mode of the ligand in the 

binding site; the default is 8. 
7. GOLD GOLD is the validated, configurable protein–ligand docking software for expert drug discovery. 
8. Discovery Studio 

(Catalyst) 
Discovery Studio is a software suite for simulating small molecule and macromolecule systems. 

 
6.3. Pharmacophore Mapping 
 
Pharmacophore mapping is a technique used to compare active drug compounds to find structural similarities or differences to 
gain insight into the molecular interactions responsible for their biological activity. This process involves building 3D models of 
chemical structures using tools such as "pharmacophore databases," which store different active compounds, structural features, 
and pharmacological properties.27,28 Once a pharmacophore map is created, scientists can analyze the information and search for 
novel compounds with similar effects to existing drugs but with improved activity. 
 

Table-4: Tools Used for Pharmacophore Mapping 

S.No Software used for 
Pharmacophore 

Mapping 

S.No Software used for Molecular Docking Mediated Pharmacophore 
Mapping 

1. Schrodinger Suite 1. AutoDock Vina - An open-source software program used for protein-ligand 
docking simulations 

2. Discovery Studio 2. Schrodinger Suite – A software package for macromolecular structure 
determination, including molecular docking and pharmacophore mapping 

tools 
3. Ligand Scout 4 3. Glide - Software application from Schrodinger used for molecular docking 

simulations and pharmacophore mapping 
4. CS Chem Space Analyzer 

Toolbox 
4. MOE – Molecular Operating Environment - All-inclusive integrated modules 

that combine 3D visualization and modeling, chemistry, high-performance 
computing, informatics, and collaboration tools. 

5. Hyper Chem HL Chem 5. PyRx for Visualization 
 
 

          ---------- 

6. Autodock Vina for Protein-Ligand Docking 
7. Schrodinger Maestro for Preparing 3D Structures 
8. LigandFit from Tripos Sybyl for Docking Studies 

 
6.4. Molecular Dynamics Simulation 
 
It is a computer simulation technique used to model the 
movements of molecules in time, which can be used to 
understand their interactions better and inform reverse 
docking strategies for drug target identification.27,28 

 

6.5. Integrated Methods 
 

Structure- and ligand-based approaches, which leverage the 
knowledge of the protein's structure or the biological and 
physicochemical characteristics of bound ligands, respectively, 
are increasingly being combined. By merging pertinent data 
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from the ligand and the protein, it is intended to increase the 
dependability of computer-aided drug design methodologies. 
The simplest combined strategy is creating a 3D 
pharmacophore to identify possible ligands and conducting 
additional docking studies on the target29. These integrated 
methods can be divided into two categories: methods based 
on interaction and methods based on docking similarity. Using 
the physicochemical information, interaction-based 
approaches pinpoint the crucial interactions between the 
protein and ligand. Then, small molecule libraries are screened 
for compounds that can create such an interaction profile 
using these interactions. Comparatively, ligand and structure-
based docking approaches are combined in docking similarity-
based methods. Virtual screening is incredibly effective using 
these pairings and enables the exploration of libraries 
containing up to 106 small compounds29. 
 

6.6. In-silico Target Prediction 
 

SARS (severe acute respiratory syndrome) broke out in China 
in the spring of 2003. A serotonin antagonist known as 
cinanserin was found to be a possible inhibitor of the 3C-like 
(3CL) protease of SARS, which is crucial for processing the 
coronavirus replicase polyprotein, according to docking-
based.'s VS analysis. According to the subsequent laboratory 
testing, cinanserin can inhibit 3CL protease at nontoxic drug 
concentrations (IC50 = 5 mM) and may also be able to 
inactivate the SARS virus. The scientists concluded that 
cinanserin might be stored in case of future SARS pandemics 
or utilized as an emergency treatment because it was an old, 
affordable medicine with a proven safety record29. Another in 
Silicotarget prediction case study was carried out by merging 
a human-reconstructed signaling network with microarray 
gene expression data, these authors developed a system 
biology technique to examine drug-target interactions and 
offer novel insights into the torcetrapib side effects that are 
not intended to be seen. The findings revealed that detrimental 
effects were very relevant to the platelet-derived growth 
factor receptor (PDGFR), interleukin-2 (IL-2), hepatocyte 
growth factor receptor (HGFR), and epidermal growth factor 
receptor (ErbB1) tyrosine kinase. Torcetrapib's acquired 
potential off-targets were also discovered using the reverse 
docking approach29. Another case study focused on fibroblast 
growth factor receptors (FGFRs), which are targets for the 
treatment of various human cancers and consist of an 
intracellular domain with tyrosine kinase activity, three 
immunoglobulin-like domains, and an extracellular ligand 
domain composed of a single transmembrane helix domain. 
Applied the reverse pharmacophore mapping approach to 
finding potential targets for an active substance that they had 
previously synthesized and demonstrated strong in vitro 

antiproliferative properties. Tyrosine kinases may be the 
representative compound's possible targets, according to in 
Silicotarget prediction. Following structural optimization, 
acenaphtho[1,2-b] pyrrole carboxylic acid esters were found 
to be potent inhibitors of FGFR1, with IC50 values ranging 
from 19 to 77 nM, and to exhibit favorable growth inhibition 
properties against FGFR-expressing cancer cell lines. It was 
shown by the structure-activity relationship (SAR) analysis 
assisted by molecular docking simulation in the ATP-binding 
site29. 
 

7. LIGAND-BASED DRUG DESIGN 
 
Ligand-based drug design utilizes pharmacophore modeling,  
chemometric analysis, and machine learning algorithms to 
quickly analyze huge amounts of data regarding known active 
sites on receptors or enzymes to identify new compounds 
with the potential to bind or inhibit their targets.29 These new 
compounds can then be further tested and refined in 
Silicobefore progressing onto further stages of drug 
development. Ligand-based drug design utilizes a library of 
known small molecules with known binding activity for a target 
protein or other macromolecule of interest. By matching the 
three-dimensional shape of the known ligand(s) to that of the 
unknown compound, computer modeling techniques are used 
to assess their binding ability with potential cancer targets29-31. 
In this way, lead compounds can be identified that exhibit 
favorable properties for effective drug delivery and maximum 
efficacy against cancer cells29-31. 
 
7.1. QSAR 
 
Quantitative structure-activity relationships (QSAR) are a 
powerful predictive tool for discovering novel compounds 
based on established relationships between chemical 
structures and biological activities. This method utilizes 
various statistical techniques to measure the relationship 
between various physicochemical parameters of a molecule 
(e.g., its size, shape, surface charge, and hydrophobicity) and 
its biological activity to predict the behavior of other 
molecules with similar structures.30-35 This type of analysis can 
provide valuable insight into structure-activity relationships, 
aiding in the design of new drugs with enhanced efficacy and 
specificity. Another method indicating 3-D QSAR modeling: is 
used to predict how changes in molecular structure can 
influence activity. They utilize physical parameters like size and 
shape and properties like electronegativity and charge density. 
It can be useful for predicting the binding affinity of small 
molecules for given drug targets without physically 
synthesizing each one for testing.36-38 The various tools for 
studying QSAR models are shown in Table-5.  

 

Table-5: Tools Used for QSAR Studies 

S.No Tools Description 
1. DRAGON Descriptors, Alignments, and Statistics for Genetic Optimization of Responses 
2. RD Kit Rational design kit for QSAR 
3. CORAL Comprehensive Organically Regulated Active Library 
4. Amber tools package Parameter for QSAR descriptors studies 
5. WEKA Machine learning algorithm with extensive capabilities for data pre-processing, 

model construction, evaluation, and optimization 
6. ChemMine Tools A suite of machine learning models and applications to process bioactivity 

data, such as clustering or virtual screening results 
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7. CatRAPID An automated framework developed to support the design of selective 
inhibitors targeting small molecules using the CatRAPID algorithm 

8. OPUSQSAR Framework based on linear methods (multiple linear regression), developed 
to allow easy data curation, development, and validation of QSAR models. 

9. DockMaster Pro An advanced tool for efficient comparison of binding sites within multiple 
ligand structures with enhanced 3D search capabilities for exploring non-

active site drug discovery 
10. SMILE (Structure Modeling Interface & Library Extension) Toolbox to Generate the 

QSAR Model Parameters 
11. KNIME To Construct Models by Connecting Nodes and Linking Tools Together 
12. Cheminformatics Suite of Chemical 

Computing Group Inc. (CCG) 
For Analyzing Structure-Property Relationships 

 
 
7.2. Fragment based-Descriptors 
 
The number of molecular descriptors is exploding for 
application in chemoinformatics; more than 4000 of these 
structural variables have been documented in the literature, 
such as functional group counts (FGC) and atom-centered 
fragments as descriptors (ACF).38 Several QSAR research have 
successfully used these descriptors. They offer a wealth of 
important knowledge about certain molecular fragments or 
functional groups, their capacity to engage in hydrophobic and 
dispersive interactions, or their capacity to display a specific 
chemical reactivity. The variables utilized in a Free-Wilson 
analysis share some characteristics with the previously 
described fragment-based descriptors. The spectral moments 
of the bond adjacency matrix (lk), the cornerstone of the 
TOPS-MODE (topological substructural molecular design) 
approach, were another set of fragment-based descriptors. 
These descriptors have been used often in QSAR studies,33–35, 
and for evaluating various toxicological profiles.38-41 
 
7.3. Artificial Intelligence (AI) Based Drug Design 
 
Artificial intelligence is being utilized to create deep learning 
models that can be used to discover novel molecules with 
desirable features and optimize existing compounds by 
selecting ideal combinations of atom types or substituents 
known to produce higher affinities or greater bioactivity 
against desired targets.42,43 

 

7.4. Virtual Screening (VS) 
 

Virtual Screening (VS): Virtual screening is an in Silicotechnique 
used to quickly and cost-effectively identify potential drugs by 
comparing them against a target drug molecule, such as a 
specific enzyme or receptor site. It allows researchers to 
rapidly explore thousands of different structures, each with its 
chemical properties, to narrow their focus to molecules with 
the most promising properties.44,45 
 

7.5. High Throughput Screening: High throughput 
screening (HTS) 

 

HTS techniques are automated processes that are used to 
quickly evaluate large numbers of compounds to identify those 
that may be suitable candidates for drug development or target 
identification using reverse docking.44,45 
 
7.6. HTS-Virtual screening 
 

It's a high-throughput screening technique used for drug 
discovery and development. This technology uses 

computational tools such as virtual libraries, QSAR 
(quantitative structure-activity relationships), 3D-QSAR, and 
protein-ligand docking to quickly screen thousands of potential 
drug molecules and identify those with the most promise for 
further study and development.46-48 It also allows exploring 
large databases of chemical compounds to find novel drugs 
with optimal binding affinity. HTS-Virtual screening is a drug 
discovery process that combines high throughput and virtual 
screening approaches to identify promising compounds for 
developing new anticancer drugs.46-48 This process typically 
involves rapidly screening large libraries of compounds using 
computer algorithms before making a more informed decision 
on which compounds should progress further in the drug 
development pipeline. Structure-based drug design is used 
within HTS-Virtual screening, where the 3D structures of 
proteins involved in disease processes are studied to 
understand their interactions with small molecules.47,48 This 
information can be used to predict and optimize new 
molecules as potential therapeutic agents. Ligand-based drug 
design takes this one step further, focusing on identifying and 
validating the relationship between biological activities of 
potential therapeutics and specific binding sites in a target 
molecule. These approaches can provide valuable insights into 
how potential new anticancer drugs interact with their targets 
and thus form an essential part of modern drug discovery 
strategies. The HTS-Virtual screening approach has been used 
in drug discovery and the development of potential new 
anticancer treatments. It involves utilizing high throughput 
screening (HTS) methods and computational models to 
identify novel compounds that may have therapeutic effects 
against cancer cells. HTS-Virtual screening leverages various 
technologies such as cheminformatics, structure-based design, 
pharmacophore searches, similarity searching, ligand-based 
design, and more to identify candidates from large libraries of 
available compounds.47,48 
 
7.7. Lead Optimization  
 
The discovery of effective new treatments for cancer 
continues to be a major challenge for the medical community. 
With the development of more sophisticated technologies and 
approaches, it is possible to identify promising leads for 
anticancer drug discovery. Lead discovery and optimization is 
a complex scientific process involving identifying, testing, and 
refining potential drug candidates49.  
 
7.7.1. Steps for lead optimization 
 
Lead optimization is a key step in anticancer drug discovery. It 
involves selecting candidate compounds that show promising 
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results in preclinical studies and then modifying them to 
improve their efficacy, safety, and bioavailability. Lead 
optimization techniques involve a series of steps divided into 
three main categories: assessing the target, analyzing the 
candidate compounds, and modifying the compounds 49-51. The 
first step in lead optimization is to assess the target. It means 
understanding the characteristics of the target protein or 
enzyme and how it functions in the disease. It will help identify 
the best compounds to target and provide insight into how 
they should be modified49-51. The next step is to analyze the 
candidate compounds. It includes testing the compounds in 
preclinical studies and evaluating their efficacy. It will help 
identify which compounds have the potential to be effective 
anticancer drugs49-51. Finally, compounds promising in 
preclinical studies must be modified to improve their efficacy, 
safety, and bioavailability. It may include chemical 
modifications, such as changing the molecule's structure, or 
using other techniques, such as conjugation or adding 
functional groups. By making these modifications, the drug can 
be more effective in treating cancer52,53. 
 
7.7.2. Lead Optimization for anticancer drug discovery 
 
Lead optimization for anticancer drug discovery is important 
in developing effective cancer therapies. It involves identifying 
and selecting compounds that interact with the target protein, 
optimizing their structures, and testing their efficacy in animal 
and human models52,53. Lead optimization involves applying 
computational and chemical techniques to improve the drug's 
activity and specificity for the target protein. It can include the 
introduction of modifications to the drug's chemical structure, 
the application of bioinformatics to analyze the structure-
activity relationships, as well as the use of high throughput 
screening techniques to identify active molecules52,53. Lead 
optimization is essential to improve the efficacy and safety of 
anticancer drugs. It helps identify new drug candidates that are 

specific and selective for the target protein and possess 
improved properties such as greater stability, bioavailability, 
and selectivity. It leads to more effective and safer anticancer 
drugs, which can help to improve the outcomes of cancer 
patients52,53. Lead optimization and discovery are critical steps 
in developing anticancer drugs. Lead optimization and 
discovery aim to find the most promising chemical compounds 
with the highest potential to become effective drugs. The 
process involves identifying, optimizing, and testing structural 
leads to develop the most promising candidate compounds52,53. 
Lead optimization involves the modification of existing 
chemical compounds to maximize their potential efficacy and 
safety. It can involve changing the chemical structure or how 
the compound binds to its target. The optimization process 
also includes testing the candidate compounds on cellular and 
animal models to assess the safety and efficacy of the 
compounds. Lead discovery involves the identification of new 
chemical compounds that have the potential to be effective 
drugs. It can be done through high throughput screening of 
libraries of compounds or the exploration of natural products. 
The discovery process also includes testing the compounds on 
cellular and animal models to assess their safety and 
efficacy52,53. In-silicoLead optimization and discovery are 
essential steps in developing any anticancer drug. By optimizing 
and discovering new compounds, researchers can identify the 
most promising candidates for further development into 
effective drugs through In-silico docking, Pharmacophore 
mapping, and QSAR studies52,53. 
 
7.7.3. Tools Used for Lead Optimizations 
 
The tools and software programs used for lead optimization 
are the Schrodinger-Phase program, mainly focused on lead 
optimization by structure-activity relationships, auto dock vina 
for drug repurposing and optimization, and Discovery Studio-
Catalyst52,53. 

 
 

 
Fig-6: Flow Chart for hit identification followed by Lead Identification and Optimization54 

 
Via data preparation to find new leads. (A) The standard in 
Silicodrug design cycle consists of docking, scoring, and ranking 
initial hits based on their steric and electrostatic interactions 

with the target site, commonly called virtual screening. 
Generally, ligand-based virtual pre-screening has been utilized 
without structural information of a receptor protein, enzymes, 
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or signal transductors and when one or more bioactive 
compounds are available. This pre-screening method is carried 
out by similarity search. The basic principle behind similarity 
searching is to screen databases for similar compounds, which 
is based on the backbone of the structural features of lead 
molecules. (B) In many situations, 2D similarity searches of 
databases use the chemical features of the first-generation hits. 
(C) One alternative approach employs a ligand-based 
pharmacophore strategy often partnered with structure-based 
docking that uses a more stringent scoring matrix to 
determine the relative score by matching two characters in a 
sequence alignment. It enhances the enrichment of initial hits 
and identifies the best compounds for computational 
evaluation: the second-generation hits. (D) Based on the 
molecular interactions between the target (Receptors, 
proteins, or enzymes) and hits (Identified active molecules), 
the second phase often identifies ligand-based sites for 
optimizing these metrics for a unique molecular chemotype. 
(E) Computer algorithms, compounds, or fragments of 
compounds from a database are positioned into a selected 
region of the structure (docking). These compounds are 
scored and ranked based on their steric features and 
electrostatic interactions between their target sites. (F) 
Structure determination of the target in complex with a 
promising lead from the first cycle reveals sites on the 
compound that can be optimized to increase potency. 
 
8. MULTI-TARGETED DRUG DESIGN FOR 

ANTICANCER DEVELOPMENTS 
 
Three different steps can be used to separate the multi-
targeted drug design strategies: The first phase in developing a 

multi-targeted medicine is choosing a target and combination; 
the second is discovering the pharmacophore against different 
targets; and the last step is combining the identified 
pharmacophore. Network pharmacology analytic methods 
and coordinated high-throughput screening (HTS) are used to 
choose target combinations while designing multi-targeted 
anticancer drugs.55,56,57 Network pharmacology provides 
helpful information regarding target/drug combinations that 
have synergistic effects and likely routes for many substances 
at the systemic level by investigating complex and multi-
layered networks. After choosing a target combination, 
identifying the pharmacophore versus individual targets was 
done rationally and computationally using shape-based 
pharmacophore matching, 3D QSAR analysis, molecular 
docking, and combinations of these methods.55,56,57 To create 
multi-targeted anticancer medicines, the identified 
pharmacophore can be combined with merged, fused, linked 
with a cleavable or non-cleavable linker, and so on. A suitable 
strategy should be employed to create multi-targeted 
medications because the methodology for the combination is 
based on the characteristics of important pharmacophore 
elements and scaffold architectures.55-57 The multi-targeted 
anticancer agent's developed molecule should sustain its 
interaction with the primary target while being acceptable to 
secondary targets. De novo designing (fragment-based drug 
designing), multi-target virtual ligand screening (VLS), 
structure-based drug design (SBDD), ligand-based drug design 
(LBDD), and combinations of these methodologies are 
computational methods that are used to design dual or multi-
targeted anticancer drugs with remarkable methods to speed 
up the process.55-57 

 
 

 
Fig 7: Flow Chart for Development of Multi-Targeted Anticancer Drugs 

 
9. CASES OF LEAD DISCOVERY AND 

OPTIMIZATION 
 
The desired activity of a lead chemical was discovered during 
screening; however, further testing is required to confirm this 
activity. One of the most used techniques for lead discovery is 
docking, which includes predicting ligand shape and orientation 
within a particular binding site. Docking is typically integrated 
into the workflow of various in Silicoprocedures. Modern drug 

development relies heavily on identifying tiny compounds and 
turning them into lead series with high content 54-,57. Zanamivir, 
dorzolamide, and captopril are three of the best instances of 
lead optimization and discovery compounds. A neuraminidase 
inhibitor called zanamivir (Relenza®, Gilead Sciences) is used 
to prevent and treat influenza brought on by influenza A and 
B viruses. The architecture of the active site of the influenza 
neuraminidase protein was revealed by X-ray crystallography, 
enabling for the first time the creation of an inhibitor to stop 
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the virus from exiting its host cell and infecting other cells 54-

,57. A drug design method focused on structure was used to 
attain this success. An array of sialic acid analogs was created 
using computer-assisted active site modeling. 47 However, 
dorzolamide (Trusopt®, Merck), a carbonic anhydrase 
inhibitor that reduces the production of aqueous humor and 
is used to treat glaucoma, was the first medication used in 
human therapy that was created using structure-based drug 
design and ab initio calculations. The project's incorporation 
of two ideas that the prototype molecule produces two 
enantiomers and that the active-site cavity is amphiphilic was 
essential for the successful design of dorzolamide. A last 
example of the early efforts and triumphs of structure-based 
and ligand-based drug design is the antihypertensive 
medication captopril (Capoten®, Bristol-Myers-Squibb), an 
ACE inhibitor used to treat some kinds of congestive heart 
failure and hypertension. The understanding that the 
enzymatic mechanism of ACE was comparable to that of 
carboxypeptidase A with the distinction that ACE cleaves off 
a dipeptide, whereas carboxypeptidase A cleaves a single 
amino acid residue from the carboxyl terminus of the protein, 
was important for the design of captopril. The development of 
captopril 4 (IC50 = 23 nM) was heavily influenced by structure-
activity relationship (SAR) research 54,-57. 
 
10. INCREASE IN BIOLOGICAL DATA ON 

CHEMICAL MOLECULES FOR DRUG 
DISCOVERY  

 
By biological screening, enormous amounts of data have been 
gathered over the past few decades on hundreds of thousands 
of tiny molecules. This data has been pooled in online 
repositories that are open to inquiry. For instance, large-scale 
studies including more than one million compounds have been 
produced due to developments in HTS methodology. 
Information is also growing quickly due to improvements in 
chemical synthesis and HTS methods. This biological assay data 
has also been aggregated in chemical library databases. The 
development of machine learning models and contemporary in 
Silicodrug discovery have been made possible by accumulating 
data and its availability to the general public. Prioritizing drug 
candidates according to their pharmacological characteristics 
and potential adverse effects can be done in the early phases 
of drug discovery using conventional prediction techniques like 
quantitative structure-activity relationship (QSAR) models. 
Several machine learning-based prediction techniques have 
been created recently due to increased public resources to 
forecast drug-target interactions, the permeability of 
substances across the blood-brain barrier, and the ADMET-
Tox characteristics of therapeutic candidates. CADD 
techniques may find a new path forward by incorporating 
machine learning algorithms and accumulating data. Table 6 
provides a list and summary of the public databases, which 
contain both chemical and biological databases that are 
accessible, and Table-7 shows a list of ligand site prediction 
tools56,57,58.

 

Table-6:  Currently Available Chemical and Biological Databases for In-silico Drug Design 
Database Website Information for In-silico Drug Design  
PubChem https://pubchem.ncbi.nlm.nih.gov Chemical structure, identification, physical and 

chemical properties, biological activities, patents, 
safety, toxicity 

PDB www.rcsb.org Macromolecules, proteins, Enzymes, Receptors, and 
3D structures   

ChEMBL www.ebi.ac.uk/chembl 2-D structures, log P, mol weight, Lipinski 
parameters, binding constants, pharmacology, and 

ADME  
Binding DB www.bindingdb.org binding affinities for drug-like compounds that 

interact with proteins (therapeutic targets). It has 
1,454,894 binding records for 652,068 small 

molecules and 7,082 protein targets 
ZINC https://zinc.docking.org substances for purchasing commercially for 

structure-based virtual screening. 90 million 
chemicals available. Ready-to-dock, 3D configurations 

with molecules depicted in biologically appropriate 
shapes 

ChemSpider www.chemspider.com structure searches for more than 63 million 
compounds  

Drug Bank www.drugbank.ca 11,652 drug entries are included in it, including 5,485 
experimental pharmaceuticals and 2,602 authorized 

small molecule drugs, as well as 1,075 approved 
biotech drugs  

GRAC www.guidetopharmacology.org summaries of the salient characteristics and available 
tool compounds and selective ligands. Information on 
the pharmacological, physiological, structural, genetic, 
and pathophysiological characteristics of each target 

ChemBridge www.chembridge.com  chemical compounds like small molecules and target-
focused screening compounds over 14,000 chemical 

building blocks 
Maybridge www.maybridge.com chemistry products and services for the drug 
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discovery and biotechnology sector. 
ChemDiv www.chemdiv.com It offers a shelf-available set of over 1.5M individual 

solid screening compounds 
 Life Chemicals www.lifechemicals.com It offers over 1,350,000 drug-like and lead-like 

screening compounds for HTS  
Specs www.specs.net ordering system for Screening compounds, Building 

blocks, and Natural products gives you FREE secured 
access to its entire available compound library of 

over 240.000 true novel compounds. 
Enamine www.enamine.net It distributes data about structures of offered 

compounds in MDL SD Files  
ZincPharmer https://zincpharmer.csb.pitt.edu Free pharmacophore search software. 

Procheck https://www.ebi.ac.uk/thornton-
srv/software/PROCHECK/ 

Protein, Macromolecule verification server 

Uniport/Swiss-
Prot 

https://www.expasy.org/resources/uniprotkb-swiss-
prot 

UniProtKB/Swiss-Prot is the expertly curated 
component of UniProtKB (produced by the UniProt 
consortium). It contains hundreds of thousands of 
protein descriptions, including function, domain 
structure, subcellular location, post-translational 

modifications, and functionally characterized variants. 
Swiss-model https://swissmodel.expasy.org/ Protein, macromolecules structure prediction, and 

Homology modeling 
Blast https://blast.ncbi.nlm.nih.gov/Blast.cgi Protein/receptors/enzymes/ Nucleotides sequence 

analysis  
CASTp http://sts.bioe.uic.edu/castp/index.html?3igg Computed Atlas of Surface Topography of Proteins 

and protein-ligand active site prediction 
Q-Site finder  https://dl.acm.org/doi/10.1093/bioinformatics/bti315 An energy-based method for the prediction of 

protein-ligand binding sites 
 

Table-7:  List of ligand binding site prediction tools. 

ligand binding site 
prediction tools 

Link Description References 

CASTp http://sts.bioe.uic.edu/castp/index.html?3igg Computed Atlas of Surface 
Topography of Proteins and protein-

ligand active site prediction 

 
       59 

Q-Site finder  https://dl.acm.org/doi/10.1093/bioinformatics/bti315 An energy-based method for the 
prediction of protein-ligand binding 

sites 

 
     60 

Meta-PPISP https://pipe.rcc.fsu.edu/meta-ppisp.html 
 

meta-PPISP: a meta web server for 
protein-protein interaction site 

prediction also ligand binding site 
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3DLigandSite http://www.sbg.bio.ic.ac.uk/3dligandsite/advanced.cgi 
 
 

3DLigandStie is an automated method 
for the prediction of ligand binding 

sites. 
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11. SUCCESSFUL APPLICATIONS IN CANCER 

DRUG DISCOVERY 
 
Creating new anticancer medications is exceedingly complex, 
expensive, and time-consuming. Given the benefit of requiring 
far less investment in technology, resources, and time, 
CADDD is gaining importance. Computational techniques are 
now being incorporated at nearly every stage of the drug 
discovery and development process due to the dramatically 
increased information on genomes, small compounds, and 
protein structures that is now readily available. Chemical 
compounds may have a higher affinity for their target when 
they are developed logically with the aid of computational 
tools, given the 3D structure of a target molecule. Several 
effective uses of structure-based medication design have been 
documented in recent years 63,64. The discovery of the p53 
upregulated modulator of apoptosis (PUMA) inhibitors is an 

intriguing example of structure-based pharmacophore 
modeling.  A proapoptotic protein belonging to the Bcl-2 
protein family, PUMA. The tumor suppressor p53 is in charge 
of controlling its expression.  PUMA suppression or ablation 
results in a lack of apoptosis, which increases the likelihood of 
cancer formation and therapeutic resistance. By interacting 
with every member of the known anti-apoptotic Bcl-2 family, 
this cancer therapeutic target plays a key role in mitochondria-
mediated cell death.  Many methods have been used to find 
small compounds that can modify the interactions between 
BH3-only proteins and Bcl-2-like proteins, suppressing 
apoptosis. Most of the work has gone into creating Bcl-2 family 
inhibitors that replicate the effects of BH3 domains, which 
promote apoptosis. These substances have been found using 
computational modeling, structure-based design, and high-
throughput screening of libraries of synthetic and natural 
products 63,64. In contrast, Liu et al67. published a combinatorial 

https://dl.acm.org/doi/10.1093/bioinformatics/bti315
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computational method for identifying possible inhibitors 
against the insulin-like growth factor-1 receptor (IGF-1R), 
which has been linked to a number of malignancies, including 
breast, prostate, and lung cancer. The tyrosine kinase family 
member IGF-1R is essential for the signaling pathway that 
controls cell growth, proliferation, and death. A focused 
library was created using the initial hit from hierarchical VS as 
the query scaffold for the substructure search. The library was 
subjected to an internal pharmacophore-constrained docking 
procedure for IGF-1R screening. Ultimately, enzymatic testing 
revealed inhibitory action in 15 out of 39 compounds. 
Surprisingly, the two strongest inhibitors showed significant 
selectivity over the insulin receptor (IR), similar to the IGF-1R, 
and great inhibitory activity (IC50 = 57 and 61 nM, 
respectively).  The scientists concluded that the prospective 
selective IGF-1R inhibitors might be studied as molecular 
probes to distinguish between the biological activities of IGF-
1R and IR in addition to being possible anticancer medicines 
63,64. Tubulin inhibitors are a further successful example of 
small compounds created employing a ligand-based strategy. A 
key target for cancer treatment is tubulin polymerization, a 
crucial step in cell cycle progression and cell division. Several 
antimitotic drugs, including paclitaxel, colchicine, and the vinca 
alkaloids, have been identified and are used in medicine. Still, 
they frequently exhibit high toxicity levels, poor bioavailability, 
quickly developing resistance, and overexpression of drug-
resistant pumps that expel these mitosis inhibitors from the 
cell. Since it is thought that antimitotic drugs might operate to 
reduce the blood supply to malignant tumors, researchers 
have spent a lot of time and energy trying to find new agents 
with more palatable and effective qualities. Liu et al67. used 
structure-activity relationship (SAR) analysis to power their 
model generation based on 21 indole derivatives first created 
for potential tubulin inhibition. These substances were chosen 
so that the range of their inhibitory IC50 values, from 1.2 nM 
to 6M, covered three orders of magnitude. Based on the same 
chemical properties of these compounds, the authors decided 
to build a chemical library using four common pharmacophoric 
features: a hydrophobic group, a hydrophobic aromatic group, 
a hydrogen bond donor, and a hydrogen bond acceptor. A 
human oral squamous carcinoma cell line was then used to test 
142 substances (KB) physiologically. Four of these 142 

biologically investigated substances were discovered to inhibit 
the KB cell line, with corresponding IC50 values of 187 nM, 
2.0 M, 3.0 M, and 5.7 M. With IC50 values of 236 nM, 285 nM, 
and 319 nM, respectively, the most potent substance of these 
four active molecules was also discovered to inhibit the 
growth of other cancer cell lines like SF-268 (human central 
nervous system cancer), NCI-H460 (human non-small-cell 
lung cancer), and MCF-7 (breast cancer). The I-Kappa-B 
Kinase (IKK-) inhibitors are another instance of small 
compounds created utilizing a computational technique. In 
addition to inflammation, 59 IKK-, a crucial component of the 
NF- B signaling cascade, is yet another potential target for 
cancer therapy. To find novel drugs with affinity to IKK-, Noha 
et al.70 opted to apply ligand-based pharmacophore modeling 
in 2011. To create an IKK- inhibitor-specific pharmacophore 
model, the ligand-based pharmacophore model for this 
investigation was based on a group of five drugs with high 
activity (IC50 values of 100 nM or less) and at least a few-fold 
difference in selectivity for IKK- over NF B 45,46. The model 
was further improved using a dataset taken from the literature 
that included 12,775 different random decoy compounds, 128 
active compounds, and 44 physiologically inactive compounds. 
The top 10 high-scoring substances underwent in vitro testing. 
The most effective compound NSC-719177 had an IC50 value 
of roughly 6.95 M and could inhibit IKK-. The capacity of 
compound NSC-719177 to suppress NF B activation in 
HEK293 cells that had been transfected and contained a 
luciferase reporter gene activated by a promoter made up of 
several copies of the NF- B response element was also tested 
by cell-based analysis. In a cell-based experiment, compound 
NSC-719177 was discovered to have an IC50 value of roughly 
5.85M and to show dose-dependent efficacy in suppressing 
TNF-induced luciferase activity. As a result, Noha et al.70 
showed the effective use of ligand-based methods for 
discovering low micromolar inhibitors of IKK. The utilization 
of high-throughput X-ray crystallography for a target alone or 
in complex with small compounds and the advancement of 
much more advanced molecular modeling tools has made 
rational drug design methodologies an essential tool for 
creating target-based therapeutics. The Selected anticancer 
drugs/inhibitors developed with computational chemistry and 
rational drug design strategies are Shown in Table-8. 

 
Table-8: Selected anticancer drugs/inhibitors developed with computational chemistry and rational drug design 

strategies 

Molecule/Drug 
Name 

Pharmacological Area Pharmacological 
Function 

References 

Gefitinib NSCLC EGFR kinase inhibitor 65 
Erlotinib NSCLC pancreatic cancer EGFR kinase inhibitor 66 
Sorafenib Renal cancer, Liver cancer, Thyroid cancer, HDACi VEGFR kinase inhibitor 67 
Lapatinib ERBB2- positive breast cancer EGFR inhibitor 68 

Abiraterone Metastatic castration-resistant prostate cancer or hormone-
refractory prostate cancer 

Androgen synthesis 
inhibitor 

69 
 

 
12. CONCLUSION 
 
Cancer is one of the leading causes of death worldwide, 
making it urgently necessary to find new ways to treat the 
disease. In Silicodocking and pharmacophore mapping are 
powerful approaches to developing anticancer drugs. These 
tools are used to investigate the interactions of a drug 
molecule with its receptor and predict its pharmacological 
effects. In this concern, we have discussed the revolutionary 

study for in Silicostructure-based and ligand-based methods, 
which include docking and pharmacophore mapping, 
Molecular modeling, Homology modeling, HTS-Virtual 
screening, drug repositioning & repurposing, and Multi 
Targeted Drug strategies for the development of anticancer 
drugs. We also demonstrated how these methods were used 
to identify effective drugs for treating cancer. Finally, These In-
silico drug design approaches have the importance of this 
innovative research for advancing the fight against cancer. 
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