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Abstract: An injury to the human body is classified as a wound if it results in a cut or a break in the skin. Depending on the 
depth of the skin layer, a wound can either be limited to the epidermal layer, which heals via re-epithelialization without the 
need for skin grafts, or full-thickness wounds, which result in the loss of both the epidermis and dermis (FTW). A full-thickness 
wound cannot heal on its own and needs a skin graft or tissue regeneration product to heal quickly. This paper provides a 
comprehensive overview of the properties of electrospun nanofibers and their application as skin regeneration products rapid 
healing of the full-thickness wound. The paper first introduces the skin, its layers, and various problems associated with human 
skin. In the next part, a wound is discussed in terms of acute and chronic wounds. Primary, secondary and tertiary clinical 
wound healing has also been discussed. The next part briefly introduces the four different phases of healing, i.e. hemostasis, 
inflammation, proliferative and maturation of newly deposited collagen into tissues. The effect of superoxide dismutase (SOD), 
catalase (CAT) and glutathione peroxidase (GPx) on reactive oxygen species, reactive nitrogen species and reactive sulphur 
species, and their effect on healing time was discussed. The electrospinning process's evolution and setup, properties of 
electrospun nanofibers, a component of electrospinning solution, and various parameters affecting electrospinning were 
discussed. Application on nanofiber scaffold in terms of drug delivery and tissue regeneration was highlighted. In the end, 
improvement in the existing nanofibrous scaffold was briefly highlighted. 
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1. INTRODUCTION 
 
With roughly 2 m2 of surface area and about 15% of the adult 
body mass, the skin is the biggest organ in the human body 1. 
It outlines the border between the body and the outer 
environment, enabling vital body functions to take place in a 
controlled physiological environment 2. The human 
integumentary system provides general bodily protection and 

comprises the skin and its supporting organs, including hair, 
nails, and exocrine glands1. 
 
1.1 Different layers of skin 
 
Figure 1 illustrates the two major layers of the skin, the 
epidermis and dermis, and the closely related hypodermis 
layer.

 
 

 
 

Fig 1: Different layers of skin1. 
 
 

1.2 The Epidermis (epi- = “upon” or “over”) 
 
The epidermal layer is a keratinized and stratified 
squamous epithelial layer. It is an avascular layer of the skin. 
Depending on the body's location, it comprises four or five 
layers of epithelial cells, known as "thin skin" or "thick skin". 
The epidermis on the eyelid is the thinnest at less than 0.1 
mm. Only the palms of the hands and the soles of the feet 
have "thick skin," which is only 1.5 mm thick there 3. 
 
1.3 The Dermis (derma- = “skin”) 
 
As distinct from the epidermis and hypodermis, the dermis 
could be deemed the "core" of the integumentary system. It 
gives the skin strength and suppleness and is typically less 
than 1 mm thick. In addition to sebaceous glands, lymph 
vessels, sweat glands, sensory nerve endings, hair follicles, 
and blood vessels, it also has a variety of immune cells. It 
comprises an interconnected mesh of structural proteins, 
primarily elastin and collagen, produced by fibroblast. The 
upper papillary and lower reticular dermis of the dermis can 
be distinguished based on the arrangement of collagen fibres 
2. 
 
1.4 The Hypodermis (hypo- = “below”) 
 
The deepest layer of skin is called the hypodermis, 
sometimes referred to as the superficial fascia or 
subcutaneous layer. It links the skin to the fascia, or 
underlying fibrous tissue, that covers the muscles and bones. 
It is mostly made up of highly perfused, porous, areolar 

connective tissue, which stores fat and provides the 
integument with insulation and cushioning 2. 
 
1.5 Problems associated with skin 
 
The integumentary system is highly disposed to various 
disorders, diseases, and injuries. These can include severe 
burns and skin cancer, both of which have the potential to be 
fatal, as well as somewhat benign microbial infections that are 
classified as diseases. For example, a skin disorder can be a 
simple rash, an inflammation (dermatitis), an inflammation 
due to an overactive immune system (eczema), caused by a 
fungal infection (ringworm, tinea versicolor), a viral infection 
(herpes, shingles, viral exantham), an allergic reaction (hives), 
scabies (caused by tiny burrowing mite), lethal cancer 
(melanoma, basal cell and squamous cell carcinoma) or 
injuries (include burns, wounds, scars etc. As per the WHO 
report− "Injuries resulting from traffic collisions, drowning, 
poisoning falls or burns - and violence - from assault, self-
inflicted violence or acts of war–kill more than five million 
people worldwide annually and cause harm to millions more. 
They account for 9% of global mortality and are a threat to 
health in every country of the world”. 
 
1.6 Wound 
 
A wound is the loss of the skin's protective function as a 
result of severe illness or damage (physical, chemical, 
thermal, or microbiological) 4. This can cause damage to 
other tissues, such as tendons, muscles, arteries, nerves, 
parenchymal organs, and even bone. It can also cause a 
simple breach in the epithelial integrity of the skin. 
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1.7 Types of wounds 
 
Depending on how quickly it heals, a wound can be 
categorized as acute or chronic. 
 
1.8  Acute wound 
 
An acute wound heals in the predicted time, and the entire 
process is complete within a few weeks. Typically, an acute 
wound goes through all the phases of normal wound healing 
for predictable tissue repair. Sudden loss of anatomical 
structure owing to surgery or trauma results in acute 
wounds. The acute wound usually occurs in normal or 
recently uninjured tissue [5, 6]. 
 
1.9  Chronic wound 
 
When an acute wound fails to heal in the predicted time, it 
becomes chronic. Owing to underlying pathologies, for 
instance, pressure ulcer, diabetic ulcer, and vascular ulcers, 
dysregulation of normal healing mechanism occur, which 
results in prolonged and pathologic healing. Usually, a healing 

arrest occurs due to a prolonged inflammatory phase. Other 
reason for prolonged healing is the development of drug-
resistant bacterial biofilms, persistent infections, failure of 
epidermal or dermal cells to respond to reparative stimuli, 
tissue hypoxia, and failed re-epithelialization caused by 
repeated trauma 5. 
 
1.10 Types of clinical wound healing 
 
Based on the abrasion, laceration, amount of skin and tissue 
loss, clinically, wound healing can be accomplished in one of 
the following way: 
 
1.11 Primary intention wound healing process. 
 
A wound heals by the primary process when it is aseptic and 
freshly created with minimum tissue loss, and its edges are in 
close proximity, smooth bordered and surgically closed by a 
suture. Primary wound healing, e.g. after a surgical incision, 
generally occur within 6-8 days without any complication and 
with scanty granulation tissues at the incised gap.

 
1.12  Secondary intention wound healing process. 
 
Secondary wounds are characterized by the loss of a 
considerable amount of tissues, and their edges are so distant 
that they cannot be sutured. Usually, healing takes longer 
repair time with scar formation. Wounds are left open, and 
gaps are filled by exuberant granulation tissue deposition and 
epithelial cell migration. There is a risk of infection due to 
large-scale tissue loss or infection has already occurred. 
 
1.13  Tertiary intention or delayed wound healing 

process. 
 
A delayed closure involves both principles, i.e. primary and 
secondary healing. It occurs when healing needs to be 
delayed intentionally, for example, when blood perfusion is 
low or the wound is highly infected. 
 
1.14 Different phases of wound healing 
 
The restoration of tissue or bodily function occurs at the end 
of the wound-healing process, which is a normal recovery 
reaction to tissue injury. Extracellular matrix, soluble 
mediators, blood, and parenchymal cells all participate in the 
complicated physiological, dynamic, and interactive healing 
process 7, 8. Hemostasis, inflammation, proliferation, and 
tissue remodelling are the three successive phases of healing 
that occur with different and overlapping durations 
depending on the wound's kind, severity, and aetiology 9-11. A 
different phase of healing is shown in Figure 2 and 
summarized in Table 1. 
 
1.15 Hemostasis and inflammatory phase 
 
The hemostasis phase begins shortly after an injury to 
control bleeding and limit the spread of pathogens in the 
body. Therefore, thromboxane A2 (TXA2) and prostaglandin 

2-α mediated vasoconstriction, collagen-activated clotting 
occurs at the wound location. Clot development ends 
bleeding and creates a barrier to keep bacteria out 6. In 
addition, the fibrin clot concentrates the growth factors and 
cytokines and serves as a scaffold for incoming cells such as 

monocytes, neutrophils, endothelial cells, and fibroblasts 12. 
The inflammatory phase begins immediately with hemostasis 
and is characterized by chemotaxis and activation of 
inflammatory cells 12. Additionally, it is characterized by 
producing several pro-inflammatory cytokines, reactive 
oxygen species, proteases, and growth factors that prevent 
infection in open wounds, enhance phagocytic activity, and 
aid in wound healing 13,14. Neutrophils are the first 
respondents, which are drawn into the wound site, release 
caustic proteolytic enzymes, and begin the digestion of 
invading microbes and nonviable tissue. Next, monocytes will 
be attracted to the wound site from the adjacent tissue and 
blood and differentiate into macrophages, a key phagocytic 
cell in wound repair. Various cytokines and enzymes are 
released by the macrophage, comprising collagenases for 

debridement of the wound; tumour necrosis factor (TNF)-α 
and interleukin (IL)-1 for the activation of fibroblasts and 
angiogenesis; and transforming growth factor (TGF) for 
stimulation of keratinocytes12, 13. A lymphocyte is the last cell 
to infiltrate the wound site, attracted 72  h after injury or late 
inflammatory phase. It helps in tissue repair and the 
avoidance of immunosuppression 6, 15. 
 
1.16 Proliferative phase 
 
The proliferative phase is described by epithelialization, 
capillaries growth, collagen concentration and granulation 
tissue formation, and wound closure. 
 

1.17 Epithelialization 
 
Normally, the epithelial progenitor cells in the basement 
membrane migrate upward and restore the epidermis within 
2-3 days. However, in case of full thickness wound or the 
absence of a basement membrane, the epithelial cells found 
on the skin edge start to increase and send projections to 
restore a protective barrier 12. 
 
1.18 Angiogenesis 
 
Angiogenesis is characterized by endothelial cell migration 

and capillary formation. TNF-α stimulates it. For the wound 
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site to receive enough oxygen and nutrients to heal 
correctly, capillaries must grow in the wound bed 12. 
 
1.19 Granulation tissue formation 
 
This concludes the proliferative phase. Fibroblasts, which are 
the main cells responsible for producing collagen, move from 
the surrounding tissue into the area of the wound during this 
phase, where they activate, begin depositing collagen and 
create a fresh extracellular matrix that is only temporary [12, 

16]. Neovascularization leads to the growth of lymphatic 
and vessel capillaries from existing vessels present at the 
wound site, which results in granulation tissue formation 13. 
 
1.20 Wound Contraction 
 
In order to aid with wound contraction, "wound fibroblasts," 
or fibroblasts already present at the wound site, will begin 
producing collagen and differentiate into myofibroblasts 12.

 
 

 
 

Fig 2: Different phases of wound healing.63 
 

1.21 Maturation or remodelling phase 
 
Clinically, the maturation or remodelling phase is crucial 
since it determines the durability and aesthetic quality of the 
repaired tissue 7. Continuous collagen deposition in a 
structured network is the primary characteristic of this stage; 
however, excess collagen deposition results in a hypertrophic 

scar or keloid. Net collagen deposition will last for at least 
4 to 5 weeks after wounding. Even after a year of maturation, 
the collagen in the scar would not become as arranged as in 
uninjured skin. Further, the strength of the wound also never 
restores to 100%. Even after three months and beyond, it 
will reach approximately 80% of uninjured skin 12.

 
 

Table 1: Phases of healing of a full-thickness wound 10 
Phase  Cellular and Bio-physiological Events 

Hemostasis phase Clotting factors are triggered as blood vessels constrict. Clot development stops bleeding and serves 
as a barrier to keep out microorganisms. Growth factors, which are released by platelets, signal 

different cells to begin the healing process at the site of the wound. 

Inflammatory 
phase 

Vasodilation, chemotaxis activation of inflammatory cells: 
- Neutrophil infiltration: begin the digestion of invading microbes and nonviable tissue 

- Monocyte infiltration and differentiation to macrophage principle phagocytic cells release 

numerous cytokines to activate fibroblast, angiogenesis and keratinocytes. 

- Lymphocyte infiltration helps in tissue repair. 

Proliferative phase In this stage, four significant processes take place: 
- Re-epithelialization: Granulation tissue and new epidermis formed. 

- Angiogenesis: New capillaries grow to supply the wound with nutrition and oxygen. 

- Collagen deposition and Native ECM formation: The wound is given strength and 
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integrity. 

- Wound Closure: The wound starts to close. 

Maturation 
(remodelling) 

phase 

The wound grows stronger thanks to the collagen and develops into a scar. 
Vascular development and regress. 

 
1.22  Factor influencing wound healing  
 
Factors that influence cellular function and physiologic responses may affect wound healing. Various factors that affect wound 
healing are shown in Table 2 10. 
 
 

Table 2: Factors affecting wound healing 
Local Factors Systemic Factors 

Infection Age and Gender, Stress, Alcoholism & Smoking 

Oxygenation Sex Hormones 

Venous Sufficiency Obesity 

Foreign Body Ischemia 

 Nutrition 

 Medications: Non-steroidal Anti-inflammatory drugs, Glucocorticoid Steroids, Chemotherapy 

 Disease: Jaundice, Diabetes, Fibrosis, Keloid, Uremia, Hereditary, Healing Disorder 

 Immuno-compromised Conditions: Cancer, AIDS, Radiation Therapy 

 
1.23 Reactive oxygen species and their significance in 

wound healing 
 
Free Due to the unpaired electrons in free radicals, they 
react with other molecules very quickly. These are known as 
reactive oxygen species (ROS), reactive nitrogen species 
(RNS), and reactive sulphur species (RSS) and are produced 
in the biological system from molecules containing oxygen, 
nitrogen, and sulphur during cell metabolism and function 17. 
Superoxide anion (O2

•), hydrogen peroxide (H2O2), 
perhydroxyl radicals (HO2

•), and hydroxyl radicals (HO•) are 
all examples of reactive oxygen species (ROS). Low levels of 
intracellular ROS play significant roles in gene expression, ion 
transport, apoptosis, and cell signalling to support cell 
proliferation and survival pathways 18, 19. In addition, Dunnill, 
Patton et al. discussed various roles of ROS in wound 
healing, as shown in Figure 3. Under normal conditions, body 
homeostasis balances the level of ROS using the endogenous 
antioxidant capacity [superoxide dismutase (SOD), catalase 
(CAT) and glutathione peroxidase (GPx)] of the human body. 

However, under adverse conditions, such as impaired wound 
healing associated with full thickness wound, chronic wound, 
and wound heavily infiltrated with microorganism, the ROS 
excessively produced in the wound area (Figure 4). These 
excessive ROS trigger the activation of matrix 
metalloproteases, which change and degrade ECM proteins 
and can also affect the function of dermal fibroblasts and 
keratinocytes, as well as the persistent release of pro-
inflammatory cytokines 20, 21. Therefore, it is obvious that for 
proper wound healing, a precise equilibrium should be 
maintained between lower and high levels of ROS. A way of 
indirectly manipulating ROS can instead be to manipulate the 
local antioxidant system by increasing dietary antioxidant 
intake 20. Exogenous or dietary antioxidants can reduce 
oxidative damage in one of three ways: (1) directly by 
scavenging free radicals, (2) indirectly by inhibiting the 
expression of enzymes that produce free radicals, or (3) by 
increasing the expression of endogenous antioxidant 
enzymes 18, 22. 
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Figure 3: The schematic diagram represents the multiple roles of ROS in  

hemostasis state during acute wound healing 20. 
 

 
 

Fig 4: Summary of ROS types, sources, and action  
point of antioxidants 18. 
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1.24 Microbial infection in an open wound 
 
An open wound is highly prone to microbial infection and is a 
major reason for tissue regeneration product failure. Either 
pathogen penetration at the incision site or the implant 
material reacting to a foreign body causes infection [15, 23]. 
These persistent pathogens infection and released-endotoxin 
at the wound site extend the inflammatory phase and 
increases the level of MMPs, a protease that begins the 
degradation of ECM [12, 24]. Antibacterial biomaterials are 
thus one of the main targets in the fight against bacterial 
invasion and infection-related to-implant diseases. However, 
conventional dosage forms require a very high dose of 
antibiotics to deliver effective concentrations of antibiotics at 
the infected site, which also causes other systemic toxicity. 
Therefore, controlled local delivery of the drug is anticipated 
to minimize the systemic side effect and achieve an effective 
concentration of antibiotics inside deep tissue [25, 26]. 
Taking into consideration of mentioned issues faced by an 
open full-thickness wound, i.e., the requirement of a tissue 
regeneration product, an exogenous antioxidant to scavenge 
excess free radicals, and an antimicrobial to resist microbial 
infection at the wound site to promote rapid wound healing, 
we had suggested creating a polymer-based nanofiber 
membrane filled with an antibacterial and an antioxidant. 
 
1.25 Nanofibers 
 
The need for new skin regeneration products has grown 
significantly over the last ten years, and new ones are being 
developed from current components. Decellularized porcine 
dermal matrix, hydrogels, and freeze-dried or gas-foaming-
produced scaffolds are often utilized for skin wound healing. 
However, these materials need to review the 3D 
architecture of the extracellular matrix (ECM) of skin 27. 
Therefore, nanofibers have emerged as a potential candidate 
for skin regeneration due to their architectural resemblance 
with native ECM. A nanofiber-based scaffold also offers 
excellent dressing properties like absorbing extra wound 
exudate, exchanging gases, maintaining wound hydration, 
minimizing wound stress, and acting as a barrier to external 
microbial infiltration [13, 28]. Besides traditional functions, 
these nanofiber scaffolds can also diminish microbial infection 
and inflammation and support wound healing by 
incorporating antimicrobial and antioxidant agents in the 
nanofiber [27, 29]. Several methods, such as drawing, 
interfacial polymerization, force spinning, melt blowing, phase 

separation, template melt extrusion template synthesis, and 
electrospinning, can be used to create nanofibers. These 
methods are briefly summarized in Table 3 30.  
1.25 Electrospinning 
 
Due to its adaptability, versatility, and relative ease of use for 
producing a range of biomimetic nanofibers from a wide 
variety of polymeric (natural and synthetic) and inorganic 
materials, the electrospinning technique has recently 
attracted significant attention in drug delivery and tissue 
engineering. Electrospinning is a relatively simple, cost-
effective and adaptable technique compared to conventional 
fibre spinning techniques. An electrospinning setup also can 
produce dry nanofibers with adjustable size, shape and 
loading efficiency in a single step [31, 32]. Furthermore, the 
polymeric nanofibers created by electrospinning may 
successfully encapsulate a variety of biomolecules while 
maintaining their bioactivity, including antibiotics and protein 
medicines like growth factors [33, 34].  
 
1.26 Properties of Electrospun Nanofibers 
 
Various properties of electrospun nanofiber membranes 
which make them an ideal candidate for wound healing 
applications are as follows 35-37: 
 
(i) The Electrospinning technique produces randomly 

oriented, thin nanofibers (50-500 nm), which imitate 
the structural and functional similarity of the natural 
ECM that promotes cell adhesion and growth. 

(ii) Electrospun nanofibers have a high surface-to-volume 
ratio, stimulating cell signalling quickly and drawing 
fibroblasts to release extracellular matrix 
components. 

(iii) Electrospun nanofiber membrane's highly porous 
structure (60–90% porosity) aids in preventing wound 
dehydration, gas penetration, and cell respiration. 

(iv) Owing to extremely interconnected pores, 
electrospun nanofibers protect the wound from 
environmental contamination and microbial infiltration 
while allowing cellular ingrowth.  

(v) Electrospun nanofibers function as a drug delivery 
system with a controlled and prolonged release profile 
and a high drug loading efficiency. The release profile 
and degradation rate of a drug-loaded nanofiber can 
be adjusted by altering the electrospinning parameter.

 
 

Table 3: Detailed explanation of the techniques most frequently used to produce nanofibers 30. 
Method Description Advantages Disadvantages 

Drawing 

Making fibre involves pulling a liquid fibre from a 
droplet of previously collected polymer solution, 

which is further solidified by solvent 
evaporation. 

Simple process 
Limited amount of 

product, discontinuous 
process 

Electrospinning 
Under high voltage, a viscoelastic polymer 

solution or its melt is converted into nanofibers 
in a single step. 

Unlimited length, core-
shell and simple 

nanofibers, and a wide 
range of solvents are all 

utilized. 

High voltage, the 
requirement for solvents, 
and additional process-

influencing factors 

Forcespinning 
A very concentrated polymer solution or melt is 

spun into fibres using centrifugal force. 

Free from high voltage, 
simple method, high 

production yield 

Thermal degradation of 
melts, fibres are usually 

much thicker than 1 µm in 
diameter 

Phase The polymer solution must first be cooled to Simple, no special tools Multiple parameters, few 



 
ijlpr2023;doi10.22376/ijlpr.2023.13.1.SP1.P127-P140                                                                                    

 

 

P134 

separation the gelation temperature to create a gel. The gel 
is then removed from the distilled water, blotted 

with filter paper, and transferred to freeze-
drying for solvent exchange. 

needed. polymers only. 

Self-assembly 
The fundamental building blocks that self-

associate to create nanofibers are amphiphilic 
molecules. 

Suitable for making 
extremely thin 

nanofibers. 

Limited control over the 
nanofibers' shape and 

orientation. 

Template melt 
extrusion 

In the head of extrusion machines, molten 
polymer is driven through a mould or spinning 

die and then cooled to solidify. Membranes 
made of anodic aluminium oxide (AAO) are 

utilized as a model. 

No need for solvents. 
Homogenous fibre 

diameter 

The short length of fibres, 
time-consuming 

Template 
synthesis 

An oxidative process causes nanofibers to 
develop inside the many cylindrical pores of a 

nonporous membrane. 

Easily controlled fibre 
with homogeneous, 
aligned nanofibers. 

Complex method 

 
 

1.27 Electrospinning setups 
 
Since John Francis Cooley pioneered it in 1900, the 
electrospinning technique has been one of the most widely 
utilized methods for producing nanofibers in the late 20th 
and early 21st centuries (US patent No. 692,631) 38. Since its 
first use by Cooley, significant developments have been made 
in the instrumentation, diversity of materials used and 
application of nanofibers. As a result, electrospinning is 
receiving growing attention in science and business 
communities and is regarded as a crucial scientific and 
commercial project with worldwide economic benefit [39, 
40]. A basic electrospinning setup, shown in Figure 5, 
consists of four main parts: an electrically conductive 
collector (a piece of aluminium foil or silicon wafer to collect 
the produced nanofibers), a high voltage (10–40 kV) power 
supply between two electrodes, a glass syringe fitted with a 
blunt end metallic needle acting as a nozzle, and a syringe  
 
 
 

 
 
 
pump to provide a steady flow of electrospinning solution. 
The electrically-conductive electrospinning solution is loaded 
into a five-cc glass syringe mounted on a pump. When a DC 
voltage was applied, the electrospinning solution acquired a 
stable shape due to the equilibrium between repulsive forces 
and surface tension. However, as the voltage increased, the 
charge repulsion started overcoming the surface tension, and 
at a critical potential, the solution acquired a conical shape 
known as Taylor Cone. Further potential increases will 
destroy the equilibrium of electric forces and surface tension. 
At this point, ultrafine nanofibers made of polymer solution 
emerge from the Taylor cone and move in the direction of 
the electric field. The stretched nanofibers are collected on 
the grounded metallic collector held at an ideal distance. The 
liquid jet is whipped during the electrospinning process, 
which decreases in diameter from several hundred 
micrometres to as thin as tens of nanometers due to the 
external and internal charge force. The polymer solution 
quickly evaporates solvents and solidifies into solids thanks to 
jet thinning 38, 41, 42. 

 
 
 

 
 

Fig 5: Schematic representation of the electrospinning setup 11. 
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1.28 Components of Electrospinning Material(s) 
 
Due to the ease of producing nanofibers and their enormous 
promise for a wide range of applications, electrospinning 
technology underwent a remarkable development. 
Electrospun fibres can now be produced from various 
polymer sources, including blends, hybrid materials, and 
polymers containing metals, metal oxides, ceramics, carbon 
nanotubes, bacteria, viruses, and enzymes. Until recently, the 
sources of electrospun fibres were only limited to single-
component polymers. 
 
1.29 One component of electrospun nanofibers 
 
Traditional early electrospun nanofibers were primarily made 
from a single-component polymer with a high enough 
molecular weight and easily soluble in suitable solvents. 
However, numerous commercially available polymers, such as 
nylons, polyethylene oxide (PEO), polyacrylonitrile (PAN), 
polyvinyl alcohol (PVA), poly-L-lactide (PLLA), PVDF, etc., 
have been effectively electrospun into nanofibers over the 
past ten years 43. 
 
1.30 Two/multi-component electrospun nanofibers 
 
Two and multi-component electrospun nanofibers offer a 
variety of compositions, topologies, and functionalities 
compared to single-component electrospun nanofibers. 
Electrospun nanofibers with two or more components are 
prepared using two different methods. The simplest method is 
to electro-spin polymer blend solutions using a single nozzle. 
Chemicals and fillers can be used to create hybrid and 
composite fibres. Another method is to use spinnerets or 
nozzles with two or more channels that can simultaneously 
deliver two or more solutions 43. 
 
1.31 Recent biomaterials used for the electrospinning of 

nanofibers 
 
Recently used biomaterials for electrospinning are discussed 
below: 

1.32 Polymers 
 

1.32.1 Natural Polymers 
 

Natural polymers that have been electrospun are proteins and 
polysaccharides. One of the most commonly used is collagen. 
Other natural polymers in electrospinning are gelatin, 
hyaluronic acid, cellulose, pullulan, zein, etc. 44. 

 
1.32 Synthetic polymer 

 
Using naturally derived polymers has several drawbacks, such 
as batch-to-batch (or source-to-source) variation in materials 
isolated from tissues, limited flexibility in the range of material 
properties that are accessible, and safety concerns regarding 
the use of materials isolated from mammalian sources, 
artificial polymers have been created as substitute materials 
for biomedical applications. For tissue regeneration, synthetic 
biodegradable polymers like PLA, PGA, PLGA, and PCL are 
currently available 44. The electrospun fibres of these polymers 
are listed in table 4. 

 
1.33 Hydroxyapatite 

 
Hydroxyapatite (HA), a significant mineral found in human 
hard tissues, has high in vitro and in vivo biocompatibility with 
bones, teeth, skin, and muscles. As a result, HA has many uses 
in orthopaedics and dentistry thanks to its bioactivity and 
osteoconductivity. 

 
1.34 Carbon 

 
The most well-known nanotechnology applications may be 
carbon nanomaterials, which include fullerenes, nanotubes, 
nanofibers, and a wide range of related forms. Although there 
are conflicting views on whether carbon nanoparticles are 
biocompatible, initial research on subcutaneous implantation 
and osteoblast co-culture experiments produced encouraging 
findings.

 
 

 
 
1.35 Parameters affecting the electrospinning process 
 
Although the electrospinning procedure is quite simple, it is 
affected by some different parameters, making it challenging 
to carry out. The variables that affect electrospinning can be 
divided into three categories: solution variables, process 
variables, and environmental variables 30. 
 
1.36 Solution parameters 
 

Solution parameters are the most widely studied and, 
contrarily, most erroneously concluded parameters. Often, a 
researcher concludes a polymer is inappropriate for 
electrospinning without adequately modifying the process 
and ambient parameters 30. Polymer and solvent 
characteristics determine the solution parameters, which 
include: 
 
1.37 Polymer characteristics 
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For electrospinning, high molecular weight polymers with 
high polymerization levels are chosen because they allow for 
a sufficient number of intermolecular entanglements. 
Generally, a low molecular weight polymer tends to form 
bead nanofiber rather than a smooth one. Furthermore, 
linear polymers are preferred over non-linear polymers since 
the latter form a viscous solution or sometimes gel, even at 
low concentrations [45, 46]. 
 
1.38 Polymer concentration and solution viscosity 
 
The optimum polymer concentration for efficient 
electrospinning depends on the polymer's characteristics and 
solvent used. The applied electric field and opposing surface 
tension lead the entangled polymer chains to break into 
fragments before reaching the collector at low polymer 
concentrations (low viscosity solutions), resulting in 
fractured and beaded nanofiber. Therefore, the polymer 
concentration (or viscosity of the solution) must be 
increased to overcome the surface tension and produce 
homogeneous, bead-free nanofibers. As the concentration of 
polymers rises, the viscosity of the solution also rises, making 
it more difficult for the solution to pass through the needle 
tip [47, 48]. 
 
1.39 Surface tension 
 
Surface tension is the main force acting against the electric 
force of the surface charge, and it resists the Taylor cone 
formation. However, after numerous research types, a 
decisive link has yet to be established between surface 
tension value and fibre morphology. Usually, a low surface 
tension value solution produces bead-less nanofibers using a 
low-voltage power supply. Furthermore, the surface tension 
of an electrospinning solution can be manipulated by adding a 
surface active agent 30. 
 
1.40 Solution conductivity 
 
Solution conductivity affects the Taylor cone formation, 
controls fibre diameter, and enables the use of lower applied 
voltage. A polymer solution with low conductivity lacks 
sufficient surface charge to form a Taylor cone; hence no 
electrospinning will occur. When the conductivity is 
increased, the surface charge increases, contributing to the 
formation of Taylor cones and reducing the fibre diameter. 
Further increase in conductivity beyond a critical value causes 
a depletion of the tangential electric field along the drop 
surface, hindering Taylor cone formation [49, 50]. 
 
1.41 Dielectric constant 
 
A few research studies have investigated how the dielectric 
constant affects the morphology of nanofibers. For example, 
it has been discovered that using solvents with high dielectric 
constants allows for efficient electrospinning of nanofibers 
with thin diameters [51, 52]. 
 
1.42 Process parameters 
 
Different process parameters affecting the electrospinning 
comprise applied voltage, flow rate of polymer solution, 
nozzle tip-to-collector distance, nozzle design, collector 
composition and geometry, and rotation speed. 
 
1.43 Applied voltage 

 
The critical voltage value differs from polymer to polymer. 
Generally, a voltage value between 5-40 kV is applied for 
productive electrospinning. An electrospinning solution with 
high surface tension, low conductivity, and high viscosity need 
higher voltages and vice versa. A high voltage causes more 
extensive stretching of polymer solution due to increased 
charge repulsion within the polymer jet, which results in the 
fabrication of small-diameter nanofibers. A further increase in 
the applied voltage beyond a critical value results in Taylor 
cone stability and hence beaded nanofibers formation [53, 
54]. 
 
1.44 Nozzle tip-to-collector distance 
 
In most cases, fibre morphology can be readily affected by 
the distance between needle tip to collector distance since it 
affects the evaporation rate, deposition time, and instability 
or whipping interval—a too-short distance results in 
nanofiber fusion and polymer film formation. On increasing 
the distance, nanofibers with thin diameter produce; 
however, it should be accompanied by increasing the applied 
voltage and the flow rate otherwise beaded will produce [55, 
56]. However, in some cases, no effect of distance was 
observed on nanofiber morphology. 
 
1.45 Solution flow rate 
 
The flow rate of the electrospinning solution determines the 
fibre morphology, and it depends chiefly on the volatility of 
the electrospinning solvent used. When a highly volatile 
solvent accompanied by a sufficiently high applied electric 
field is employed for electrospinning, smooth nanofiber 
nanofibers could be produced at a higher flow rate. 
However, some studies observed that a higher flow rate 
resulted in thicker nanofiber or beaded nanofiber or 
deposition of wet nanofibers [57, 58]. 
 
1.46 Nozzle design 
 
Spinning nozzles have undergone numerous modifications to 
produce various types of nanofibers. A coaxial nozzle creates 
core-shell or even multilayered nanofibers, whereas a single-
channel nozzle only allows for the creation of homogenous 
nanofibers 59. When the polymer concentration in the 
solution flowing through the inner needle is very low, a 
coaxial nozzle can also create hollow nanofibers and 
nanofibers with coated inner walls. Core-shell nanofibers 
have an empty core with a thin film of polymer placed on it 
after the solvent is evaporated 60. 
 
1.47 Collector 
 
A conductive collector is required to produce a sufficient 
electric field and thus to initiate electrospinning—non-
conductive collector results in charge accumulation and 
hence lower packing density of nanofibers 41. The collector 
can be a rotating cylinder, a wheel-like disk, or a flat surface 
(patterned or continuous). While rotating collectors have 
been employed to collect aligned fibres, static planar 
collectors produce randomly arranged nanofibers 61. 
1.48 Ambient parameters 
 
Even though ambient factors like temperature and relative 
humidity aren't typically thought of as factors that affect 
electrospinning, they have a significant impact. Inversely, 
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higher temperatures lead to greater solvent evaporation and 
thicker nanofiber formation. Relative humidity impacts 
electrospinning depending on the makeup of the polymer 
solution. Water functions as a non-solvent in non-polar 
polymeric solutions, and increasing relative humidity creates 
porous nanofibers 30. 
 
1.49 Application of electrospinning technique 
 
The application range from filtration to tissue engineering 
scaffolds, cosmetic masks, military protective gear, 
nanosensors, energy-related applications, wound dressings, 
drug delivery, and enzyme immobilization 62. 
 
1.50 Nanofibers in drug delivery  
 
Numerous drugs, including antibiotics, analgesics, non-
steroidal anti-inflammatory drugs, anticancer drugs, nucleic 
acids, and growth factors, have already been incorporated 
into nanofibers during the more than ten years that they 
have been studied as drug delivery systems for transdermal, 
oral, oromucosal, parenteral, and ocular application 30. 
 
1.51 Nanofibers in tissue engineering 
 
Regenerative medicine is a new, fascinating, and developing 
research area. It permits the production of functional tissue 
substitutes to restore or replace tissue or organ function lost 
due to ageing, damage, illness, or congenital impairments. 
Basic research in tissue engineering and regenerative 
medicine further attempts to investigate tissue deposition, 
development, and remodelling by utilizing knowledge from 
various fields. For example, electrospun nanofiber loaded can 
be used angiogenesis (blood capillaries regeneration), skin 
regeneration, cartilage growth and bone growth, etc. 
 
1.52 Improvement of existing electrospun nanofibers 
 
Although electrospinning technology has seen several 
advancements, in this part, we will address the future 
directions of electrospun nanofibers as they pertain to tissue 
regeneration applications. 
 
1.53 Functionalized nanofibers 
 
Using endothelial cell culture, Collagen-coated PLA-CL has 
shown greater cell adhesion, spreading, and survival than the 
unmodified nanofibers. This opens the door to composite 

materials that combine the benefits of synthetic polymers and 
natural proteins while retaining the nanofiber structure 44. 
 
1.54 Three-dimensional extension 
 
Extension in three dimensions: Based on in vitro and in vivo 
tests, earlier research on non-nanofibrous polymer scaffolds 
revealed that the 3D form reacted differently from the 2D 
materials. The 3D extension of nanofibers must be 
accomplished as soon as possible if we wish to continue using 
biomimetic nanofibers as the best scaffolds for tissue 
regeneration 44. 
 
2. CONCLUSION 
 
An open and hard-to-heal wound is very prone to microbial 
infection. It is heavily infiltrated with endogenous reactive 
oxygen species. Additionally, due to the loss of residual cells 
for regeneration, these types also require a skin regeneration 
scaffold. Electrospinning is a simple method for creating 
fibres with diameters ranging from tens of nanometers to 
several micrometres out of a variety of polymers and blends 
with various morphologies. The electrospun nanofibers have 
a large specific surface area and a high aspect ratio. The 
outstanding mechanical capabilities of the polymer are the 
result of the polymer molecules' strong orientation along the 
fibre axis. The mechanical properties of electrospun 
nanofibers are influenced by their size. Additionally, the 
electrospun nanofiber mats and membranes have very 
porous architectures. Electrospun nanofibers are a desirable 
option for composite reinforcement because of all these 
qualities. We suggested developing a polymer-based 
nanofiber membrane loaded with an antibacterial and an 
antioxidant for application at the wound site to achieve 
quicker wound healing, considering the abovementioned 
problems experienced by an open full-thickness wound. 
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