

BIOSORPTION OF AMOXICILLIN FROM CONTAMINATED WATER ONTO PALM BARK BIOMASS

DAVOUD BALARAK¹, ALI JOGHATAYI², FERDOS KORD MOSTAFAPOUR¹, AND HOSSEIN AZARPIRA*³

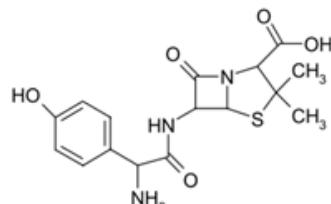
¹Department of Environmental Health, Health Promotion Research Center, School of Public Health, Zahedan University of Medical Sciences, Zahedan, Iran

²Student Research Committee, Qom University of Medical Sciences, Qom, Iran

^{3*}Department of Environmental Health, Faculty of Health School, Saveh University of Medical Sciences, Saveh, Iran

ABSTRACT

The adsorption of amoxicillin (AMX) onto palm bark from aqueous solutions was studied in a batch adsorption system. Factors influencing AMX adsorption such as initial AMX concentration (10–100 mg/L), contact time (10–180 min), and adsorbent dosage (0.5–5 g/L) were investigated. The maximum removal efficiency of AMX was 98.1% under optimum conditions of adsorbent dose 3 g/L, contact time of 90 min and temperature 25 °C and initial AMX concentration 10 mg/L. Adsorption isotherms models including Langmuir, Freundlich and Temkin were tested. It was inferred that the Langmuir models (with very high R^2 values) were most suited to describe the sorption of AMX in aqueous solutions and the monolayer adsorption capacity of AMX was found to be 35.92 mg/g.


Keywords: Adsorption, palm bark, Batch studies, Isotherm,

INTRODUCTION

Pollution of water resources by different pollutants is nowadays a global environmental issue^{1, 2}. For several decades now Pharmaceuticals constitute have been used in veterinary and human medicine, yet these compounds when released into the environment have potential risks for aquatic and terrestrial organisms^{3, 4}. An important source of these organic compounds is the discharge of effluents from wastewater treatment plants into surface water bodies^{5, 6}. They also come from solid waste disposal, spills and uncontrolled discharges from industries, spreading of manure and sewage sludge as organic fertilizer in agricultural soils, surface run-off, etc. Their concentrations are usually in the ng/L to μ g/L range^{7, 8}. Among the various pharmaceutical compounds, antibiotics have been paid particular attention because of their potential role in the development of antibiotic-resistant bacteria⁹⁻¹⁰. Antibiotics are used extensively in human and veterinary medicine, as well as in aquaculture to prevent or treat microbial infections¹¹⁻¹³. Most antibiotics tested to date are

known to be biorecalcitrant under aerobic conditions¹⁴. Amoxicillin (AMX) is a drug belonging to the class of semi-synthetic β -lactam antibiotic that has a broad spectrum against both Gram-negative and Gram-positive bacteria^{15, 16}. AMX is one of the top-priority human and veterinary pharmaceuticals, and should receive greater attention in the management of environmental systems in Iran due to its high consumption^{17, 18}. AMX belongs to a group of drugs that are predominantly excreted in an unmetabolized form, and some investigations have reported that AMX might present a possible chronic risk in the aquatic environment^{19, 20}. Various treatment technologies have been proposed for antibiotics removal including chemical oxidation, precipitation, biological treatment, ion exchange, coagulation–flocculation and so on²¹⁻²³. However, these treatment processes present a number of drawbacks in terms of low efficiency, usually produce large amounts of sludge and cannot effectively be used to treat a wide range of antibiotic wastewater^{24, 25}. Among the numerous techniques of antibiotic removal, the adsorption

technique has been found to be superior to other techniques as it can be used to remove antibiotics from wastewater, due to its simple design, easy operation, and relatively simple regeneration^{26, 27}. In this investigation, Palm bark (PB) was chosen as biosorbent due to being of its natural, renewable and thus cost-effective biomass. The objective of the present work is to investigate the potential of PB biomass for the removal of AMX antibiotics from contaminated water by biosorption. Optimum biosorption conditions biomass dosage, contact time and initial AMX concentration were determined. The Langmuir and Freundlich and Temkin models were used to describe equilibrium isotherms.

Biosorbent preparation and characterization

For the present investigation, Palm bark biomass collected from the Palm groves in Zahedan city, Iran, was used for the experiment. The grime contents were removed from PB biomass surface by repeated washing with boiling water. The wet form of PB biomass was initially air-dried for 5 hours and then kept in the oven at around 60 °C for another 10 hours. The dried biomass was ground, sieved to particles size 1.18 mm and stored in polythylene bags. Morphology and characterization of PB biomass were determined by using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX). The Brunauer–Emmett–Teller (BET) of the PB biomass was analyzed by nitrogen adsorption instrument in an ASAP 2020 surface area.

Adsorption equilibrium isotherm

The adsorption of AMX on PB adsorbent was studied using the batch adsorption technique. The

MATERIALS AND METHODS

Materials

Amoxicillin (AMX) (formula mass 365.4 g/mol) with purity higher than 99% was supplied by Sigma–Aldrich. Its pKa₁ and pKa₂ and pKa₃ values are 2.67 and 7.11 and 9.55. The chemical molecular formulae and structure of the AMX are C₁₆H₁₉N₃O₅S is given in Fig. 1. The acetonitrile (ACN, 99%, Aldrich), HCl, NaOH were also provided by Sigma–Aldrich. All the chemicals used for the study were of analytical grad.

adsorption experiments have been conducted using 50 mL of AMX solution of different initial concentrations (10, 25, 50, 75 and 100 mg/L). The solutions were mixed with 3 g PB biomass in 100 mL Erlenmeyer flasks. All experiments were performed at the optimum pH (pH 6.5) by adding 0.1 M HCl and NaOH solutions. The flasks were placed in a shaker at a constant speed of 200 rpm and 30 °C for 1.5 h to reach equilibrium. Then, the samples were placed in a centrifuge for 15 min at 4000 rpm. The concentration of AMX in a solution was measured using a Knauer HPLC (C₁₈ ODS column) with a UV detector 2006 at a wavelength of 190 nm. The mobile phase was a mixture of buffer phosphate with pH = 4.8 and acetonitrile with a volumetric ratio of 60/40 with an injection flow rate of 1 mL/min. The amount of AMX adsorbed onto PB biomass (q_e) can be calculated as below^{28, 29}:

$$q_e = \frac{(C_0 - C_e) \times V}{M}$$

Where C₀ and C_e (mg/L) are the initial and the equilibrium concentrations of AMX, respectively. V (L) is the volume of the solution and W (g) is the mass of the adsorbent. The optimum amount of the adsorbent dosage was investigated using different amounts of the adsorbent (0.5–5 g/L) at a concentration of 50 mg/L.

The reaction order and rate constants are important factors in the design of adsorption process that are determined using adsorption isotherms and kinetics. The pH values, temperature and adsorbent dosage were identical for all of the equilibrium experiments. The amount of AMX adsorbed on PB biomass can be calculated as below^{30, 31}:

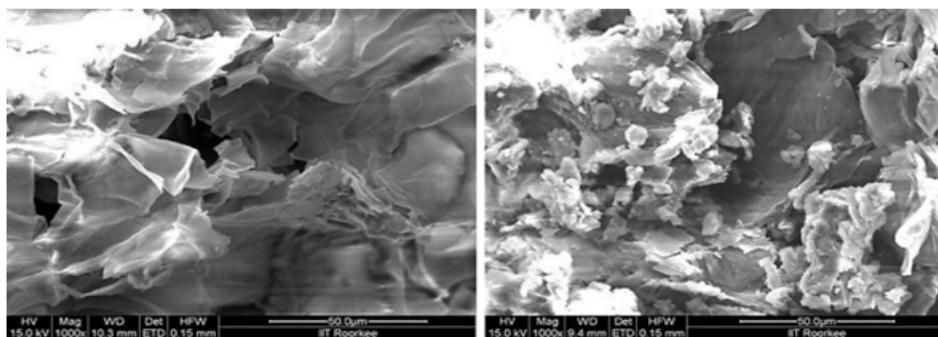
$$q_t = \frac{(C_0 - C_t) \times V}{M}$$

where C_t (mg/L) is the concentration of the AMX solution at time t (min). The standard deviations (SD) of all experimental data points were calculated

according to the equation below and the values were shown graphically as error bars in the figures^{32, 33}:

$$SD = \sqrt{\frac{1}{N} \sum_{i=1}^N (X_i - \mu)^2}$$

Where N and μ are the number and the average of the experimental data, respectively.


RESULTS AND DISCUSSION

Characterization of the adsorbent was studied using SEM micrograph of biosorbent as depicted in the

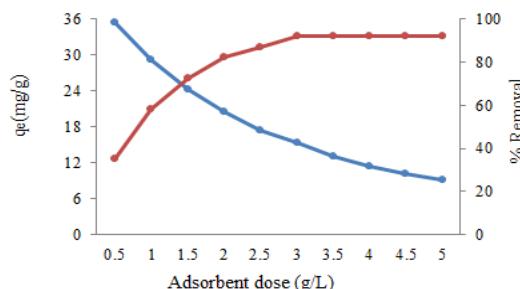
Fig. 1. It shows that the adsorbent have an irregular and porous surface. The PB biomass was cellulose in nature-based material containing tannin and lignin based organic compounds Physico-chemical analysis of PB biomass was conducted to analyse the percentage removal of moisture content of biosorbent as shown in Table 1.

Table 1
Physiochemical characteristics of PB biomass

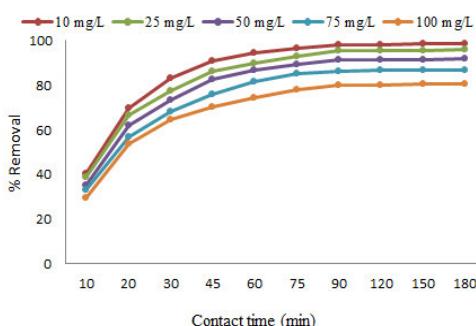
Proximate analysis	Moisture (%)	Ash (%)	Volatile (%)	Fixed carbon (%)
	7.9	8.1	49.2	34.8
BET surface area (m ² /g) = 124.36	Bulk density (kg/m ³) = 17.42			

Figure 1
Scanning electron micrograph of PB biomass
a: before biosorption b: after biosorption

Effect of adsorbent dose


Biosorbent dose study was performed ranges from 0.5 to 5 g of biomass represented in Fig. 2. As the amount of sorbent dose increased, the percentage of AMX sorbed increased. This indicates the increase in available binding sites^{34, 35}. However, further increase in sorbent dose (more than 3 g) did not have any significant effect on AMX removal. Hence, the present investigation found that 3 g of biosorbent was the optimum dose and effective percentage removal of AMX from liquid phase. Beyond 3 g there was lesser removal of AMX due to saturation of pores at the surface of biosorbent^{36, 37}.

Effect of Contact time and initial AMX concentration


The effect of contact time for the adsorption of AMX by PB biomass was studied for a period of 3 h for initial AMX mass concentrations of 10-100 mg/L at 298 K. The effect of contact time on removal of AMX is shown in Fig. 3. As concentration of AMX increases efficiency (%) removal decreases for same contact time. The uptake of adsorbate species is fast at the initial stages of the contact period, and thereafter, it becomes slower near the equilibrium. In between these two stages of the uptake, the rate of adsorption is found to be nearly constant. This is

obvious from the fact that a large number of vacant surface sites are available for adsorption during the initial stage, and after a lapse of time, the remaining vacant surface sites are difficult to be occupied due to repulsive forces between the solute molecules on the solid and bulk phases³⁸⁻⁴⁰. The effect of initial AMX mass concentration on the removal of AMX by PB biomass is shown in Fig. 3. The efficiency

AMX removal decreased with increase in initial AMX mass concentration. The necessary driving force to overcome the resistance to the mass transfer of AMX between the aqueous and the solid phases is provided by initial AMX concentration. The increases in initial AMX mass concentration also enhance the interaction between AMX and PB biomass^{41, 42}.

Figure 2
Effect of adsorbent dosage
 $(C_0 = 50 \text{ mg/L, Contact time} = 75 \text{ min, pH} = 7, \text{ temp} = 25^\circ\text{C})$

Figure 3
Effect of contact time and AMX concentration
 $(\text{pH} = 7, \text{ Adsorbent dosage} = 3 \text{ g/L and temp} = 25^\circ\text{C})$

Equilibrium

Various isotherm equations like Freundlich, Langmuir and Temkin have been used to describe the equilibrium characteristics of adsorption. The Freundlich isotherm is derived by assuming a heterogeneous surface with a non-uniform distribution of heat of adsorption over the surface. Whereas in the Langmuir theory basic assumption is that the sorption takes place at specific homogeneous sites within the adsorbent. Temkin isotherm contains a factor that explicitly takes into

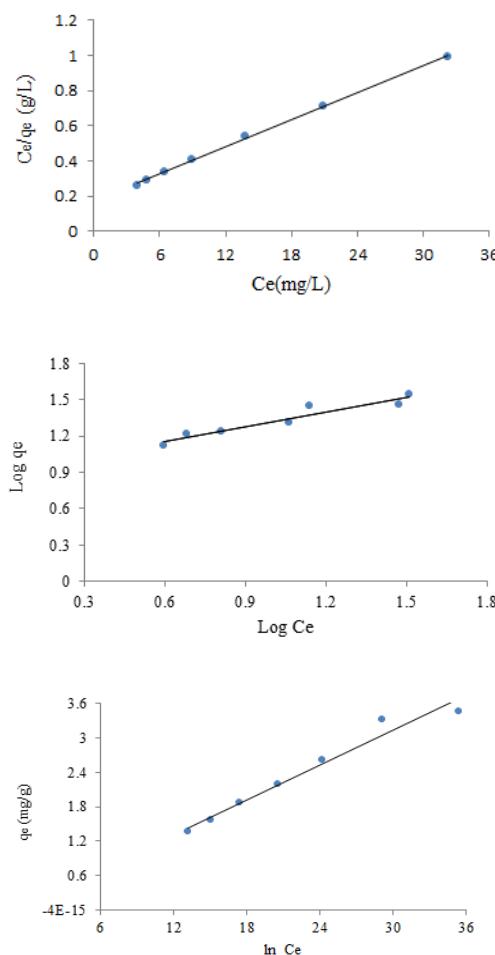
the account adsorptive-adsorbent interactions. This isotherm assumes that (i) the heat of adsorption of all the molecules in the layer decreases linearly with coverage due to adsorbent-adsorbate interactions, and that (ii) the adsorption is characterized by a uniform distribution of binding energies, up to some maximum binding energy. Freundlich and Langmuir isotherms Linearised form of Freundlich and Langmuir isotherm equations are given a⁴³⁻⁴⁵:

$$\ln q_e = \frac{1}{n} \ln C_e + \log K_F$$

$$\frac{C_e}{q_e} = \frac{1}{q_m K_L} + \frac{C_e}{q_m}$$

Fig. 4a shows the Freundlich isotherm plots (log q_e VS. log C_e) for adsorption of AMX onto PB biomass. Langmuir isotherm plot (C_e/q_e VS. C_e) are

shown in Fig. 4b for adsorption onto PB biomass. Temkin isotherm for adsorption is given as^{46, 47}


$$q_e = \frac{RT}{b} \ln (KC_e)$$

which can be linearized as:

$$q_e = B \ln K + B \ln C_e \text{ and } B = \frac{RT}{b}$$

A plot of q_e versus $\ln C_e$ enables the determination of the isotherm constants B and K from the slope and the intercept, respectively. K is the equilibrium binding constant (l/mol) corresponding to the maximum binding energy and constant B is related to the heat of adsorption. Fig. 4 c shows the Temkin isotherm plot for PB biomass. Freundlich and Langmuir and Temkin isotherm constants are given in Table 2. It can be seen from the Table 2 that the

calculated correlation coefficients are also closer to unity for Langmuir isotherm than the Freundlich and Temkin model. Therefore, the sorption of AMX can be approximated more appropriately by the Langmuir isotherm. Also Lower SD values and good correlation coefficient were observed for Langmuir isotherm model, which indicates the best fit model and significant in describing the AMX adsorption process.

Figure 4
(a) Langmuir model
(b) Freundlich model
(c) Temkin isotherm model.

Table 2
Isotherm parameters for adsorption of AMX onto PB biomass

Langmuir model				Freundlich model				Temkin model				
q _m (mg/g)	R _L	K _L	R ²	SD	n	K _F	R ²	SD	B	K	R ²	SD
35.92	0.0684	0.272	0.998	0.0241	2.798	0.364	0.914	0.782	4.271	0.483	0.927	0.446

CONCLUSION

In this study a new PB biomass is used for the removal of AMX from synthetic water. The SEM, EDS analysis confirms the AMX adsorption. The lowest particle size obtained for the PB biomass was 1.18 mm with maximum surface area of

124.36. The maximum removal efficiency of AMX was 98.1% under optimum conditions with adsorption equilibrium time of 90 min. The adsorption data are best supported to langmuir model with correlation coefficient 0.998 adsorption capacity was found to be 35.92 mg/g.

REFERENCES

1. Diyanati RA, Yazdani J, Balarak D. Effect of sorbitol on phenol removal rate by *lemona minor*. Mazandaran university of medical science. 2013;22(87):58-64.
2. Zazouli MA, Mahdavi Y, Bazrafshan E, Balarak D. Phytodegradation potential of bisphenol A from aqueous solution by *Azolla Filiculoides*: journal Iranian journal of environmental health science and engineering. 2014;10:14-20.
3. Ding R, Zhang P, Seredych M, Bandosz TJ. Removal of antibiotics from water using sewage sludge- and waste oil sludge-derived adsorbents. Water research. 2012;90:40-6.
4. Bui TX, Choi H. Adsorptive removal of selected pharmaceuticals by mesoporous silica SBA-15. Journal of Hazardous Materials. 2009;168:602-8.
5. Balarak D and Mostafapour FK. Batch Equilibrium, Kinetics and Thermodynamics Study of Sulfamethoxazole Antibiotics Onto *Azolla filiculoides* as a Novel Biosorbent British Journal of Pharmaceutical Research. 2016; 13(2): 1-14.
6. Chen WR, Huang CH. Adsorption and transformation of tetracycline antibiotics with aluminum oxide. Chemosphere. 2010; 79, 779-85.
7. Balarak D, Mostafapour FK, Azarpira H. Adsorption Kinetics and Equilibrium of Ciprofloxacin from Aqueous Solutions Using *Corylus avellana* (Hazelnut) Activated Carbon. British Journal of Pharmaceutical Research. 2016; 13(3): 1-14.
8. Zhang W, He G, Gao P, Chen G: Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Sep Purif Technol. 2003, 30:27-35.
9. Yahiaoui I, Aissani-Benissad F, Fourcade F, Amrane A. Removal of tetracycline hydrochloride from water based on direct anodic oxidation (Pb/PbO₂ electrode) coupled to activated sludge culture, Chem. Eng. J. 2013;221; 418-25.
10. Balarak D, Mostafapour FK, Azarpira H. Water remediation using Rice shell-based activated carbon for removal of Sulfamethoxazole: Error analysis. The Pharmaceutical and Chemical Journal. 2016, 3(3):71-77.
11. Zhu XD, Wang YJ, Sun RJ, Zhou DM. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO₂. Chemosphere. 2013; 92; 925-32.
12. Brigante M, Schulz PC. Removal of the antibiotic tetracycline by titania and titania-silica composed material. Journal of Hazardous Materials. 2011;192;1597-1608.
13. Chang PH, Li Z, Jean JS, Jiang WT, Wang CJ, Lin KH. Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite. Appl Clay Sci. 2012; 67;158-163.
14. Balarak D, Mostafapour FK, Joghataei A. Experimental and Kinetic Studies on Penicillin G Adsorption by *Lemna minor*. British Journal of Pharmaceutical Research. 2016; 10(2): 1-11.
15. Ghauch A, Tuqan A, Assi HA. Elimination of amoxicillin and ampicillin by micro scale and nano scale iron particles. Environ Pollut. 2009,157:1626-35.
16. Yaghmaeian K, Moussavi Gh, Alahabadi A. Removal of amoxicillin from contaminated water using NH₄Cl-activated carbon:

Continuous flow fixed-bed adsorption and catalytic ozonation regeneration. *Chemical Engineering Journal*. 2014;236:538–44.

17. Balarak D, Mahdavi Y, Maleki A, Daraei H and Sadeghi S. Studies on the Removal of Amoxicillin by Single Walled Carbon Nanotubes. *British Journal of Pharmaceutical Research*. 2016;10(4): 1-9.

18. Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M, Preparation, characterization and adsorption potential of the NH₄Cl-induced activated carbon for the removal of amoxicillin antibiotic from water, *Chem Eng J*. 2013; 217:119–28.

19. Kerkez-Kuyumcu Ö, Bayazit SS, Salam MA. Antibiotic amoxicillin removal from aqueous solution using magnetically modified graphene nanoplatelets. *Journal of Industrial and Engineering Chemistry*. 2016; 35; 225-34.

20. Kakavandi B, Rezaei Kalantary R, Jonidi Jafari A, Esrafily A, Gholizadeh A, Azari A. Efficiency of powder activated carbon magnetized by Fe₃O₄ nanoparticles for amoxicillin removal from aqueous solutions: Equilibrium and kinetic studies of adsorption process. *Iranian Journal of Health and Environment*. 2014; 7 (1) :21-34.

21. Balarak D, Mahdavi Y and Mostafapour FK. Application of Alumina-coated Carbon Nanotubes in Removal of Tetracycline from Aqueous Solution. *British Journal of Pharmaceutical Research*. 2016; 12(1): 1-11.

22. Balarak D, Azarpira H, Mostafapour FK. Study of the Adsorption Mechanisms of Cephalexin on to Azolla Filiculoides. *Der Pharma Chemica*, 2016, 8(10):114-21

23. Balarak D, Azarpira H. Rice husk as a Biosorbent for Antibiotic Metronidazole Removal: Isotherm Studies and Model validation. *International Journal of ChemTech Research*. 2016; 9(7); 566-73.

24. Balarak D, Mostafapour FK. Canola Residual as a Biosorbent for Antibiotic Metronidazole Removal. *The Pharmaceutical and Chemical Journal*, 2016, 3(2):12-17.

25. Ocampo-Pérez R, Rivera-Utrilla J, Gómez-Pacheco C, Sánchez-Polo M, López-Peñalver JJ. Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase, *Chem. Eng. J.* 2012; 213; 88–96.

26. Aksu Z, Tunc O. Application of biosorption for Penicillin G removal: Comparison with activated carbon. *Process Biochemistry*. 2005;40(2):831-47.

27. Malakootian M, Balarak D, Mahdavi Y, Sadeghi SH, Amirmahani N. Removal of antibiotics from wastewater by azolla filiculoides: kinetic and equilibrium studies. *International Journal of Analytical, Pharmaceutical and Biomedical Sciences*. 2015;4(7):105-113.

28. Upadhyayula VKK, Deng S, Mitchell MC, Smith GF. Application of carbon nanotube technology for removal of contaminants in drinking water: A review. *Science of the Total Environment*. 2009; 408; 1–13.

29. Rivera-Utrilla J, Prados-Joya G, Sánchez-Polo M. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. *Journal of Hazardous Materials*. 2009; 170: 298–305.

30. Parolo ME, Savini MC, Vallés JM, Baschini MT, Avena MJ. Tetracycline adsorption on montmorillonite: pH and ionic strength effects, *Appl. Clay Sci.* 208;40:179–86.

31. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide, *J. Colloid. Interface Sci.* 2012; 368; 540–546.

32. Mohammadi AS, Sardar M. The Removal of Penicillin G from Aqueous Solutions using Chestnut Shell Modified with H₂SO₄: Isotherm and Kinetic Study. *Journal of Health & Environmental*. 2012;6(1):497-508.

33. Balarak D. Kinetics, Isotherm and Thermodynamics Studies on Bisphenol A Adsorption using Barley husk. *International Journal of ChemTech Research*. 2016; 9(5); 681-90.

34. Balarak D, Azarpira H, Mostafapour FK. Thermodynamics of removal of cadmium by adsorption on Barley husk biomass. *Der Pharma Chemica*, 2016,8(10):243-47.

35. Diyanati RA, Yousefi Z, Cherati JY, Balarak D. Investigating phenol absorption from aqueous solution by dried azolla. *Journal of Mazandaran University of Medical Science*. 2013; 22(2);13-21

36. Zazouli MA, Mahvi AH, Mahdavi Y, Balarak D. Isothermic and kinetic modeling of fluoride removal from water by means of the natural biosorbents sorghum and canola. *Fluoride*. 2015;48(1):15-22.

37. Zazouli MA, Yazdani J, Balarak D, Ebrahimi M, Mahdavi Y. Removal Acid Blue 113 from Aqueous Solution by Canola. *Journal of*

Mazandaran University Medical Science. 2013;23(2):73-81.

38. Diyanati RA, Yousefi Z, Cherati JY, Balarak D. The ability of Azolla and lemna minor biomass for adsorption of phenol from aqueous solutions. *J Mazandaran Uni Med Sci.* 2013; 23(106).17-23.

39. Ji LG, Chen W, Duan L, Zhu D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents, *Environ Sci Technol.* 2009; 43; 2322-2327.

40. Yao Y, He B, Xu F, Chen X. Equilibrium and kinetic studies of methyl orange adsorption on multiwalled carbon nanotubes. *Chemical Engineering Journal.* 2011; 170;82-89.

41. Balarak D, Joghataei A. Biosorption of Phenol using dried Rice husk biomass: Kinetic and equilibrium studies. *Der Pharma Chemica,* 2016, 8(6):96-103.

42. Zazouli MA, Mahvi AH, Dobaradaran S, Barafrashtehpour M, Mahdavi Y, Balarak D. Adsorption of fluoride from aqueous solution by modified Azolla Filiculoides. *Fluoride.* 2014;47(4):349-58.

43. Zazouli MA, Balarak D, Karimnezhad F, Khosravi F. Removal of fluoride from aqueous solution by using of adsorption onto modified Lemna minor: adsorption isotherm and kinetics study. *Journal of Mazandaran University Medical Sciences* 2014; 23(109): 208-17.

44. Balarak D, Jaafari J, Hassani G, Mahdavi Y, Tyagi I, Agarwal S, Gupta VK. The use of low-cost adsorbent (Canola residues) for the adsorption of methylene blue from aqueous solution: Isotherm, kinetic and thermodynamic studies. *Colloids and Interface Science Communications.* *Colloids and Interface Science Communications.* 2015; 7;16-19

45. Balarak D, Mahdavi Y, BazrafshanE ,Mahvi AH. Kinetic, isotherms and thermodynamic modeling for adsorption of acid blue 92 from aqueous solution by modified azolla filiculoides. *Fresenius Environmental Bulletin.* 2016; 25(5); 1321-30.

46. Balarak D, Mahdavi Y, Bazrafshan E, Mahvi AH, Esfandyari Y. Adsorption of fluoride from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetic, and thermodynamic parameters. *Fluoride.* 2016; 49(1)71-83.

47. Balarak D, Mostafapour FK, Joghataei A. Adsorption of Acid Blue 225 dye by Multi Walled Carbon Nanotubes: Determination of equilibrium and kinetics parameters. *Der PharmaChemica.* 2016, 8(8):138-45.