Inhibitive Effect of Organic Inhibitors on the Corrosion of Mild Steel in Acidic Medium

P.Singaravelu1, N. Bhadusha1 and V.Dharmalingam2

1Research Scholar, Department of Chemistry, Government Arts College (Autonomous), Salem - 636007, Tamilnadu, India.
2Assistant Professor, Department of Chemistry, Mahendra Engineering College (Autonomous), Namakkal - 637503, Tamilnadu, India.

Abstract: The aim of the present work was to study the corrosion inhibition of mild steel using organic inhibitors. The corrosion inhibition activity of a newly synthesized [4-(4-aminobenzoyl)piperazin-1-yl)(furan-2-yl)methanone (4-4-ABPFM) and [4-(4-aminophenyl)piperazin-1-yl)(furan-2-yl)methanone (4-4-APFM) was investigated on the corrosion of mild steel in 1N HCl at room temperature for two hours using different methods such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Organic Inhibitor (4-4-ABPFM) were prepared throughout condensation of hydrochloric acid and reduction reaction using the reagent SnCl2, compound (4-4-APFM) involved a two reaction sequence of nucleophilic aromatic substitution and nitro group reduction, characterized by Fourier transform infrared spectroscopy (FT-IR). Electrochemical polarization test was also conducted to confirm the effectiveness of inhibition. Morphology of sample surfaces was respectively examined by scanning electron microscope (SEM). The result shows that the inhibition efficiency increases significantly up to 80% [4-(4-aminobenzoyl)piperazin-1-yl)(furan-2-yl)methanone (4-4-ABPFM) and 73% [4-(4-aminophenyl)piperazin-1-yl)(furan-2-yl)methanone (4-4-APFM). The optimum efficiency is obtained at (4-4-ABPFM) concentration of 100 ppm for exposing time of 2 hours at room temperature. The polarization curve shows the inhibitor behaves as a mixed inhibitor with the dominant cathodic inhibition. The adsorption of optimum concentration of both the inhibitor on the surface of mild steel in 1N HCl solution follows Langmuir adsorption isotherm. The Surface condition is improved due to the adsorption and then formation of thin layer film protection in the surface of the mild steel. The synthesized compounds show an appreciable corrosion inhibition property for mild steel in 1N HCl medium at room temperature which varies in the order: (4-4-APFM) < (4-4-ABPFM) compound.

Keywords: Organic inhibitors, Mild steel, Electrochemical studies, Adsorption, FT-IR, SEM

Received On 27 December, 2021
Revised On 17 March, 2022
Accepted On 25 March, 2022
Published On 2 May, 2022

Funding: This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

This article is under the CC BY-NC-ND Licence (https://creativecommons.org/licenses/by-nc-nd/4.0)
1. INTRODUCTION

Mild steel is used in many industrial and structural applications due to its good mechanical strength and relatively low cost\(^\text{1,2}\). Acidic solutions commonly used in many industrial activities, including the steelmaking finishing process, constitute an environmentally corrosive media for mild steel\(^2\). The use of organic corrosion inhibitors has been identified as one of the most economical ways of reducing corrosion rate and protecting steel-made industrial facilities against corrosion. Mild steel undergoes severe corrosion in pickling processes. Hydrochloric and sulfuric acids are widely used for pickling and steel-made industrial facilities against corrosion. Mild steel experiences economical ways of reducing corrosion rate and protecting the surface and thereby reduce the corrosion attack. The efficiency of these compounds as corrosion inhibitors can be attributed to the number of mobile electron pairs present, the p orbital character of free electrons and the electron density around nitrogen and oxygen atoms\(^5\). In recent years, many researchers synthesized many organic compounds and they were utilized as corrosion inhibitors in various acidic media. A research article stated that 5-Amino-2-chloro-3-Picoloine (ACP) corrosion inhibitor was used in 1.11N HCl medium which shows inhibition efficiency of 85.39\(^\%\)\(^6\). Using Formazan derivative products were synthesized and used as an inhibitor in 1.11 N HCl medium at three different temperatures it shows IE at 303K -79.21\(^\%\), 353K-67.94\(^\%\) and 403K-60.67\(^\%\)\(^6\). In 1 M sulphuric acid and 1 M HCl, a group of oxadiazoles compounds were used as corrosion inhibitors where the efficiency denoted $>$90 \% in 1 M HCl than in 1 M sulfuric acid (IE%-70)\(^7\). Inhibition efficiency 96.8\% of Schiff base triazole compound against 1 M HCl was identified and reported\(^1\), Previous existing data show that organic compounds act by forming surface film at metal/electrolyte interfaces\(^1,2\). Generally, adsorption of these inhibitors is influenced by numerous factors including chemical structure, electronic distribution, and nature of metal and testing medium\(^3,4\). Literature survey reveals that heterocyclic's containing nitrile groups act as efficient corrosion inhibitors for metals in different testing media\(^5\). The selection of inhibitors for different processes is screened for various reasons by considering its availability and nontoxicity. This is in combination with the specific characteristics of many corrosion retarding substances, which partially demands the mixed mode inhibitors obtain high corrosion inhibition. Considering costs of most common corrosion inhibitors, recently researchers focused on identifying new groups of inexpensive and effective inhibitors to address future environmental and safety needs. Hence, the identification of drugs as effective corrosion inhibitors for metals in acidic medium has paid good attention\(^8\). Therefore, keeping an eye on the industrial and environmental scenarios, the present study deals with the synthesis of two organic inhibitors namely [4-(4-aminobenzoyl)piperazin-1-yl](furan-2-yl)methane (4-4-ABPFM) and [4-(4-aminophenyl)piperazin-1-yl](furan-2-yl) methane (4-4-APFM) and their application for the first time as corrosion inhibitors on mild steel in 1N HCl medium time of 2 hours at room temperature in the concentration range of 10 ppm to 100 ppm. The inhibitive activity of (4-4-ABPFM) and (4-4-APFM) is examined successively via weight loss measurement, Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, Langmuir isotherm calculation, scanning electron microscopy (SEM).

2. MATERIALS AND METHODS

2.1 Materials used for Corrosion Studies

Most commonly used mild steel specimens with the following composition were Fe = 99.720, Ni = 0.017, Mo = 0.016, Cr = 0.049, S = 0.014, P = 0.017, Si = 0.009, Mn = 0.142, C = 0.016. According to ASTM\(^\text{22}\) the specimens were cut into 5cm x 1 cm size and punched a hole at the top with numbers for immersing into the test sample. In order to remove the dust the specimens were subject into a pickling bath of specific composition, which contains Con.HCl – 1 lit, Sb\(_2\)O\(_3\) – 20g, SnCl\(_2\)2H\(_2\)O – 50 g at a room temperature (30\(^\circ\)C) for about 20-30 minutes.

2.1.1 Testing Sample

Triethylamine, stannous chloride, 4-fluoronitrobenzene, 1-(2-furyl) piperazine, potassium carbonate and other reagents used analytical grade chemicals. All the solutions were prepared by using AR grade and by using doubled distilled water. IN HCl solution was prepared by diluting 89mL of 11.3N HCl to 1000mL. Inhibitor Solutions: Using the crude synthesized organic compound [4-(4aminobenzoyl)piperazin-1-yl](furan-2-yl)methane (4-4-ABPFM) and [4-(4-aminophenyl)piperazin-1-yl](furan-2-yl) methane (4-4-APFM) were prepared by dissolving 1gm respectively in one liter of 1 N HCl. This stock solution was diluted to 10, 20, 40, 60, 80, and 100 ppm using 1 N HCl solution.

2.1.2 Weight Loss Method

As per the procedure, MS specimens were cut according to the ASTM standard. The material was pickled in a pickling solution and dried in desiccators. Specimens were stored in desiccators after taking the initial weight and each run of the weight loss method was carried out in 100 mL of a beaker containing test solution with and without inhibitor. A similar procedure was carried out for both inhibitors for two hours at room temperature. Using the following equations readings were calculated.

\[
\text{Corrosion rate } K = \frac{8.76 \times 10000 \text{ W}}{\text{ATD}}
\]

\[
\text{Inhibition efficiency } \text{IE}\% = \frac{W_1 - W_t}{W_1} \times 100
\]
2.2 Adsorption parameters

Adsorption parameters such as the adsorption of free energy (ΔG_{ads}), adsorption of enthalpy (ΔH_{ads}) and entropy of adsorption (ΔS_{ads}) were calculated using Langmuir adsorption isotherm, which is presented by the following:

\[
\frac{C_{inh}}{\theta} = \frac{1}{K_{ads}} + C_{inh}
\]

Where C_{inh} is the inhibitor concentration, K_{ads} is the equilibrium constant, θ is surface coverage.

\[
\log\left(\frac{\theta}{1 - \theta}\right) = \log A + \log C_{inh} - \frac{Q_{ads}}{2.303RT}
\]

Where, A is a constant, Q_{ads} is the heat of adsorption or enthalpy of adsorption.

Equilibrium constant K_{ads} was calculated from the intercepts ($1/K_{ads}$) of the straight line obtained from the plot of C_{inh}/θ Vs C_{inh}. The free energy of adsorption was calculated by substituting the equilibrium constant value in the equation.

\[
\Delta G_{ads} = -RT\ln (55.5K_{ads})
\]

The plot of $\log (\theta / (1-\theta))$ Vs 1000 / T at various concentrations of inhibitors yield a straight line. The slope of the straight line is $-\Delta H_{ads} / 2.303R$. Activation of enthalpy of (ΔH_{ads}) is calculated from the slope value. The activation of entropy (ΔS_{ads}) is obtained from the equation.

\[
\Delta G_{ads} = \Delta H_{ads} - T\Delta S_{ads}
\]

2.3 Electrochemical measurements

Mild Steel (MS) material was cut into 1 x 1 cm2. The working electrode is molded with Araldite, 1 cm2 of the working electrode to be immersed into a test solution. The uncovered surface was polished by using various grits of emery paper and using acetone it was degreased. In a test solution, the three electrodes were immersed and steady-state potential was identified and leftover for 20 minutes. Using a lugging capillary tube the potential of the electrode which is used (MS) and calomel electrode (SCE) was measured. Throughout the experiments were carried out at room temperature. The resultant current was measured by applying constant potential at an approximate voltage of ± 200 mV. The values of Tafel slopes, β_a, β_c and current density were obtained by the extrapolation of the values obtained from polarization curves. The inhibition efficiency was calculated using the following formula.

\[
IE\% = \frac{I_{corr} - I_{corr(i)}}{I_{corr}} \times 100
\]

\[
l_{corr} = \text{Corrosion current density in the absence of inhibitor}
\]

\[
l_{corr(i)} = \text{Corrosion current density in the presence of an inhibitor.}
\]

A frequency range of 10 kHz to 0.01 Hz was performed for AC impedance study and the same type of electrode set up which is used for potentiodynamic polarization study. R_s solution resistance and R_t total resistance were attained between high to low frequency. Which intercepts on the Z' axis, which is associated with the Nyquist plot respectively. Using the formula C_d values were calculated.
2.4 Scanning Electron Microscopy (SEM)

Before testing the SEM, mild steel material was cut into three cubes with a side length of 0.3 cm. Polishing on 400–7000 mesh grit paper which turns the surface into the flat before testing. Two mild steel cubes were separately immersed in 1N HCl in the absence and presence of the inhibitors for 2 hrs at room temperature.

3. RESULT AND DISCUSSION

3.1 Synthesis of [4-(4-aminobenzoyl)piperazin-1-yl](furan-2-yl)methanone

The synthesis of [4-(4-aminobenzoyl)piperazin-1-yl](furan-2-yl)methanone is outlined in Scheme 1. 4-nitrobenzoyl chloride was reacted with 1-(2-furoyl) piperazine in the presence of triethylamine to form the [4-(furan-2-carbonyl) piperazin-1yl](4-nitrophenyl) methanone. The resulting reaction was subjected to a reduction reaction using the reagent SnCl₂ to form the compound [4-(4-aminobenzoyl) piperazin-1-yl] (furan-2-yl) methanone.

![Scheme 1. Synthesis of [4-(4-aminobenzoyl)piperazin-1-yl](furan-2-yl)methanone](image)

3.1.1 Fourier Transform Infrared Spectroscopy (FT-IR)

The FT-IR spectrum of [4-(furan-2-carbonyl) piperazin-1-yl] (4-nitro phenyl) methanone (Fig. 1) showed absorption bands in 1625 cm⁻¹ confirming the presence of carbonyl carbon C=O.

![Fig.1. FT-IR spectrum of [4-(furan-2-carbonyl) piperazin-1-yl] (4 nitro phenyl) methanone](image)

The strong band appeared in 1530 cm⁻¹ and 1350 cm⁻¹ due to NO₂ stretching frequencies. Two bands at stretching frequencies in 2923 cm⁻¹ and 2862 cm⁻¹ due to CH symmetric and asymmetric frequencies, respectively (Fig.1). In the FT-IR spectrum of Fig. 2, reduction of nitro group was confirmed by the disappearance of the NO₂ group absorption band at 1530 cm⁻¹ and 1350 cm⁻¹ with the appearance of amine NH₂ absorption band at 3334 cm⁻¹ and 3221 cm⁻¹. The FT-IR spectrum of Fig. 2 indicated band at 1606 cm⁻¹ for C=O stretch, 1261 cm⁻¹ for C-N stretch, and 1171 cm⁻¹ for C-O stretching frequencies.
3.2 Synthesis of [4-(4-aminophenyl) piperazin-1-yl] (furan-2-yl) methanone

Synthesis of [4-(4-aminophenyl) piperazin-1-yl] (furan-2-yl) methanone involved a two reaction sequence of nucleophilic aromatic substitution and nitro group reduction. 4-fluoronitrobenzene was first substituted by aromatic nucleophilic displacement with 1-(2-furoyl) piperazine to give the product. The reaction was carried out in the presence of potassium carbonate base and acetonitrile solvent at 70°C. The nitro group of [(furan-2-yl) [4-(4-nitrophenyl) piperazin-1-yl] methanone was reduced by a similar synthetic pattern.

3.2.1. Fourier Transform Infrared Spectroscopy (FT-IR)

Fig. 2. FT-IR spectrum of [4-(4-aminobenzoyl) piperazin-1-yl] (furan-2-yl) methanone

Fig. 3. FT-IR spectrum of [furan-2-yl] 4-(4-nitrophenyl) piperazin-1-yl] methanone
The FT-IR spectrum of [furan-2-yl) 4-(4-nitrophenyl) piperazin-1-yl] methanone showed stretching bands at 1492 cm\(^{-1}\) and 1332 cm\(^{-1}\) for NO\(_2\) group (Fig.3). The characteristic absorption bands at 1629 cm\(^{-1}\) (C=O stretch), 1596 cm\(^{-1}\) (C-C stretch), 1238 cm\(^{-1}\) (C-N stretch) and 1171 cm\(^{-1}\) (C-O stretch) confirmed the expected product. In the FT-IR spectrum of [4-(4-aminophenyl) piperazin-1-yl] (furan-2-yl) methanone, reduction of nitro group was confirmed by the disappearance of the NO\(_2\) group absorption band at 1492 cm\(^{-1}\) and 1332 cm\(^{-1}\) with the appearance of amine NH\(_2\) absorption band at 3423 cm\(^{-1}\) and 3344 cm\(^{-1}\) (Fig. 4). The FT-IR spectrum of [4-(4-aminophenyl) piperazin-1-yl] (furan-2-yl) methanone indicated band at 1625 cm\(^{-1}\) for C=O stretch, 1275 cm\(^{-1}\) for C-N stretch, 1176 cm\(^{-1}\) for C-O stretch and 940 cm\(^{-1}\) bend.

![FT-IR spectrum of [4-(4-aminophenyl) piperazin-1-yl] (furan-2-yl) methanone](image)

3.3 Determination of Corrosion rate, inhibition efficiency (IE), and surface coverage

The various corrosion parameters such as corrosion rate (CR), inhibition efficiency (IE), and surface coverage were obtained from the weight loss method for mild steel in 1N HCl without and with the various concentrations of (4-4-ABPFM) and (4-4-APFM) inhibitor ranges from 10 ppm to 100 ppm at room temperature for two hours which is tabulated in Table-1. The inhibition efficiency was found to be increased with an increase in the concentration of the inhibitors\(^{26-30}\).

<table>
<thead>
<tr>
<th>Concentration of the inhibitors (ppm)</th>
<th>(4-4-ABPFM)</th>
<th>(4-4-APFM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rate of corrosion (mmpy)</td>
<td>Inhibition efficiency (%)</td>
</tr>
<tr>
<td>Blank</td>
<td>10.5506</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>7.8988</td>
<td>30.98</td>
</tr>
<tr>
<td>20</td>
<td>7.1501</td>
<td>43.66</td>
</tr>
<tr>
<td>40</td>
<td>5.8690</td>
<td>49.29</td>
</tr>
<tr>
<td>60</td>
<td>4.8295</td>
<td>57.04</td>
</tr>
<tr>
<td>80</td>
<td>2.8977</td>
<td>72.53</td>
</tr>
<tr>
<td>100</td>
<td>1.2681</td>
<td>80.28</td>
</tr>
</tbody>
</table>

*Inhibition efficiency is 4-4-ABPFM > 4-4-APFM

![Comparison of Corrosion rate of (4-4-ABPFM) and (4-4-APFM) inhibitor on mild steel at room temperature for two hours](image)
The maximum inhibition efficiency of (4-4-ABPFM) was 80.28% and for (4-4-APFM) 73.06% was obtained at 100 ppm of an optimum concentration which is due to the formation of a protective layer by the added inhibitors. Fig. 5 and 6 represent the comparison of corrosion rate and inhibition efficiency of (4-4-ABPFM) and (4-4-APFM) inhibitors.

Fig. 6. Comparison of Inhibition Efficiency of (4-4-ABPFM) and (4-4-APFM) inhibitor on mild steel at room temperature for two hours

3.4 Adsorption isotherm

Weight loss method were carried out to understand the fundamental information on the interaction between the inhibitors and mild steel surface coverage (θ) which is investigated by the adsorption isotherms with an optimum concentration of (4-4-ABPFM) and (4-4-APFM) in 1N HCl at room temperature for two hours. The values of surface coverage (θ) for optimum concentrations of (4-4-ABPFM) and (4-4-APFM) are given in Table. 2.

Table 2. Langmuir adsorption isotherm for adsorption of (4-4-ABPFM) and (4-4-APFM) on mild steel in 1N HCl

<table>
<thead>
<tr>
<th>Concentration (M)</th>
<th>Inhibitor</th>
<th>Surface coverage (θ)</th>
<th>ΔG_{ads} KJ / mol^{-1}</th>
<th>K x(10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 PPM</td>
<td>(4-4-ABPFM)</td>
<td>0.80</td>
<td>-10.051</td>
<td>1.80</td>
</tr>
<tr>
<td></td>
<td>(4-4-APFM)</td>
<td>0.73</td>
<td>-7.321</td>
<td>1.80</td>
</tr>
</tbody>
</table>

*θ = 4-4-ABPFM (0.80) > 4-4-APFM (0.73)

A plot of C/θ versus C gave a straight line with unit slope suggest that the adsorption of (4-4-ABPFM) and (4-4-APFM) on the metal surface is conforming to Langmuir isotherm31,32, there is no interactive or repulsive force between the adsorbed molecules and mild steel surface. The adsorption of various concentrations of (4-4-ABPFM) and (4-4-APFM) on the surface of mild steel in 1N HCl solution follows Langmuir adsorption isotherm as shown in Fig. 7.

Fig. 7. Comparison of Langmuir adsorption isotherm for adsorption of (4-4- ABPFM) and (4-4-APFM) on mild steel in 1N HCl
The adsorption of (4-4-ABPFM) and (4-4-APFM) on a mild steel surface made a blockade for mass and charge transfer. This situation led to the protection of a mild steel surface from the action of aggressive ions in 1N HCl solution. The degree of protection increased with surface coverage by the adsorbed molecules. Therefore the inhibitors show physical and no chemical adsorption. It indicates the force of electrostatic drive of attraction that took place between inhibitor molecules and the surface of the metal. Adsorption of free energy (ΔG_{ads}) in 1N HCl, was found to be -10.051 kJmol$^{-1}$ in (4-4-ABPFM) and -7.321 kJmol$^{-1}$ in (4-4-APFM). The values indicate physisorption took place in these inhibitor systems.

3.5 Electrochemical measurements

3.5.1 Potentiodynamic Polarization Studies

Corrosion on mild steel in 1N HCl with the inhibitory effect of 4-4-ABPFM and 4-4-APFM at room temperature was studied using Potentiodynamic polarization studies and it is depicted clearly in Fig. 8 at optimum concentration. Tafel slopes like the Cathodic shift and anodic shift ($-\beta_a$ and $-\beta_c$) were calculated using polarization values of various potentiodynamic parameters, E_{corr} - corrosion potential and I_{corr} - corrosion current was also calculated. There is a shift in the cathodic region due to the adsorption factor of the inhibitor over the mild steel surface which is observed from the E_{corr} values.

![Fig.8. Potentiodynamic polarization curves of mild steel in 1NHCl in the absence and presence of the inhibitors at room temperature](image)

This indicates the controlling nature of the inhibitor which actively blocks the sites on the surface of the metal in an acidic medium. This evidence explains that there is considerable polarization access at the cathode. The inhibitive action of the inhibitor molecule on mild steel in the acidic medium at different temperatures is a cathodic type of inhibitor. From Table 3 potentiodynamic polarization parameters are represented which shows variability on Tafel slopes and reveals that inhibitor at all concentrations at different temperatures shows the corrosion mechanism process at the cathode$^{33-35}$. At three different temperatures in comparison, I_{corr} values decreased.

<table>
<thead>
<tr>
<th>Name of the Inhibitor</th>
<th>Conc.(ppm)</th>
<th>$-\beta_a$ (mV dec$^{-1}$)</th>
<th>$-\beta_c$ (mV dec$^{-1}$)</th>
<th>E_{corr} (mV)</th>
<th>I_{corr} (mA cm$^{-2}$)</th>
<th>Corrosion rate (mmpy)</th>
<th>IE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td></td>
<td>7.016</td>
<td>5.900</td>
<td>-570</td>
<td>18.103</td>
<td>210.36</td>
<td>---</td>
</tr>
<tr>
<td>4-4-ABPFM</td>
<td>100</td>
<td>9.759</td>
<td>4.049</td>
<td>-361</td>
<td>3.432</td>
<td>91.700</td>
<td>81.04</td>
</tr>
<tr>
<td>4-4-APFM</td>
<td>100</td>
<td>7.525</td>
<td>4.496</td>
<td>-426</td>
<td>4.213</td>
<td>35.150</td>
<td>76.72</td>
</tr>
</tbody>
</table>

IE % = 4-4-ABPFM (81.04) > 4-4-APFM (76.72)

3.5.2 Electrochemical Impedance Studies

The efficiency of the inhibitor EIS - Electrochemical impedance spectroscopy is the best method. This method clearly explains the adhesive nature of the inhibitor over the mild steel surface in a 1N HCl medium. For different corrosion system features of EIS Spectra were shown based on their charge transfer control, diffusion control or a mixer type of inhibitor. From EIS data (Nyquist plot), the mechanism of corrosion can be identified. Electrochemical interface which in term referred to as electrical features can be interpreted using EIS data36.

<table>
<thead>
<tr>
<th>Name of the Inhibitor</th>
<th>Concentration (ppm)</th>
<th>Rct (Ohm cm2)</th>
<th>Cdl (µF/cm2)</th>
<th>I.E %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td></td>
<td>22.54</td>
<td>805.22</td>
<td>---</td>
</tr>
<tr>
<td>4-4-ABPFM</td>
<td>100</td>
<td>81.32</td>
<td>245.65</td>
<td>81.03</td>
</tr>
<tr>
<td>4-4-APFM</td>
<td>100</td>
<td>59.84</td>
<td>698.51</td>
<td>62.33</td>
</tr>
</tbody>
</table>

Rct (Ohm cm2) 4-4-ABPFM (81.32) > 4-4-APFM (59.84)

Fig. 9. A.C. Impedance curves of mild steel electrode immersed in 1N HCl in the absence and presence of the inhibitors at room temperature

Due to the heterogeneous surface of the surface and roughness of the electrodes are often referred to as dispersion of frequency. The real axis with a semicircle at the center under which gives a Nyquist plot represents the solid electrode’s characteristic features37. Nyquist plots for the interface of mild steel electrode and electrolyte with and without inhibitors at optimum concentrations of inhibitors at room temperature were shown in Fig. 9. Impedance parameters were represented in Table. 4. The presence of the N-H group in the inhibitor compound shows better efficiency in the prevention of MS material.

3.6 Scanning Electron Microscopy (SEM)

Surface analysis was carried out by SEM technique to observe the surface conditions of the mild steel in contact with 1N HCl solution.
The surface of mild steel specimens without and with 4-4-ABPFM and 4-4-APFM inhibitor concentration was immersed for 2 h at room temperature in the Scanning electron microscope (SEM) with the magnification shown in Fig. 10. (a,b and c). This result is due to the adsorption of inhibitor compounds around the pits. The inert film blocks the active site present on the mild steel surface.

4 CONCLUSION

The studied organic inhibitors act as excellent corrosion inhibitors for MS in 1N HCl. Investigated for their inhibition performances on mild steel corrosion in 1N HCl solution. The results of both gravimetric and electrochemical experiments showed that all the two compounds inhibit mild steel corrosion in 1N HCl solution and the inhibition efficiency increases with increasing concentration of the inhibitors. The EIS study reveals that the inhibitor functioned via adsorption on metal/solution interface. The potentiodynamic polarization measurements show that (4-4-ABPFM) and (4-4-ABPFM) act as a cathodic inhibitor. The adsorptions of inhibitors were found to follow the Langmuir adsorption isotherm. The results obtained by SEM micrographs. Further, corroborate the formation of protective film on the metal surface. The application of organic inhibitors to inhibit corrosion of mild steel.

5 ACKNOWLEDGEMENTS

The Author expresses their sincere thanks to the Department of Chemistry, Government Arts College (Autonomous), Periyar University, Salem - 636007, Tamilnadu, India for providing the necessary facilities for the successful completion of this research work.

6 AUTHORS CONTRIBUTION STATEMENT

P. Singaravelu and N. Bhadusha conceptualized and gathered the data about this work. V. Dharmalingam these data and necessary inputs were given towards the designing of the manuscript. All authors discussed the methodology, results and contributed to the final manuscript.

7 CONFLICT OF INTEREST

Conflict of interest declared none

8 REFERENCES

