Plasmid-Curing, Antimicrobial, Antioxidant Properties and Phytochemical Analysis of Medicinal Plants from North East India

Aparna Gunjal¹, Rajashree Patwardhan²*, Aditi Jedhe³ and Vaishnavi Choudhary²

¹Department of Microbiology, Dr. D. Y. Patil, Arts, Commerce and Science College, affiliated to Savitribai Phule Pune University, Pimpri, Pune 411018, Maharashtra, India.
²Department of Microbiology, Haribhai V. Desai College of Arts, Science and Commerce, affiliated to Savitribai Phule Pune University, Pune 411002, Maharashtra, India.

Abstract: The medicinal importance of plants is in their bioactive substances which exert definite physiological action on the human body. In the present investigation antimicrobial activities of *Garcinia pedunculata*, *Phlogacanthus thyrsiformis*, and *Ziziphus mauritiana* were studied against microbial strains using agar disc diffusion. *In-vitro* phytochemical screening for chloroform, isoamyl alcohol and water extracts of parts of plants was performed. For MIC (minimum inhibitory concentration), grid method was used. The antioxidant activity of the plant extracts was studied using the ferric reducing antioxidant method and bioautography was studied using Thin Layer Chromatography (TLC). *Garcinia pedunculata* and *Phlogacanthus thyrsiformis* extracts showed highest antimicrobial activity. *In-vitro* phytochemical screening for chloroform, isoamyl alcohol and water extracts of parts of plants showed positive results for alkaloids, saponins, steroids, triterpenes, flavonoids and diterpenes. The MIC value of *Garcinia pedunculata*, *Phlogacanthus thyrsiformis* and *Ziziphus mauritiana* was 2560, 1280 and 2560 µL, respectively. The antioxidant activity revealed that there was an increase in absorbance with the increase of sample concentration. In Thin Layer Chromatography-Bioautography, chloroform extract of *Garcinia pedunculata* and *Ziziphus mauritiana* showed activity with zones of inhibition on bioautograms. The chloroform extract of *Ziziphus mauritiana* was found to be effective with curing efficiency for *E. coli K12* (RP4), *E. coli* (pBR322) and *E. coli* (pRK2013) 62%, 57% and 49% respectively. Petroleum ether extract of *Phlogacanthus thyrsiformis* cured *E. coli K12* (RP4), *E. coli* (pBR322) and *E. coli* (pRK2013) at 38%, 42% and 35% curing efficiencies respectively. This is the first report of plasmid curing by using chloroform *Ziziphus mauritiana* and petroleum ether extract of *Phlogacanthus thyrsiformis*. The present investigation has revealed applications and significance of plant extracts of *Garcinia pedunculata*, *Phlogacanthus thyrsiformis*, and *Ziziphus mauritiana* as plasmid curing, antimicrobial and antioxidant agents to control infections and spread of antibiotic resistance in pathogenic bacteria.

Keywords: Antimicrobial, Phytochemical, Plasmid curing, Antioxidant, Bioautography

*Corresponding Author

Rajashree Patwardhan, Department of Microbiology, Haribhai V. Desai College of Arts, Science and Commerce, affiliated to Savitribai Phule Pune University, Pune 411002, Maharashtra, India.

Received On 22 July 2020
Revised On 07 October 2020
Accepted On 13 October 2020
Published On 04 January 2021

Funding This research did not receive any specific grant from any funding agencies in the public, commercial or not for profit sectors.

Citation Aparna Gunjal, Rajashree Patwardhan, Aditi Jedhe and Vaishnavi Choudhary, Plasmid-Curing, Antimicrobial, Antioxidant Properties and Phytochemical Analysis of Medicinal Plants from North East India, (2021). Int. J. Life Sci. Pharma Res. 11(1), P100-109

http://dx.doi.org/10.22376/ijpbs/lpr.2021.11.1.P100-109

This article is under the CC BY-NC-ND Licence (https://creativecommons.org/licenses/by-nc-nd/4.0)
1. INTRODUCTION

Plants are known to produce diverse bioactive substances of therapeutic value. Plants such as vegetables, fruit, spices, medicinal herbs, etc., have been used to cure many diseases since ancient times. Synthetic drugs which are readily available and highly effective in curing various diseases have some disadvantages and are more harmful compared to traditional folk medicines. Diversity of secondary metabolites isolated from plants have shown that these compounds have anticancer, antibacterial, analgesic, anti-inflammatory, anti-tumor, antiviral and anti-plasmodial activities. The medicinal plants should be studied for their properties, safety, and efficacy and for new potential antimicrobial compounds and fractions. During the past few years, there has been a dramatic increase in microbial resistance to antimicrobial agents which has led to repeated use of antibiotics. Plants are the most common and important sources of potentially valuable new drugs. There is, therefore, an urgent need to study the biological properties of additional medicinal plants to develop new drugs. The medicinal plants and their uses are shown in Table 1. A wide range of medicinal plant parts are used as extracts for raw drugs. The medicinal value of the plants lies in the bioactive substances which produce definite physiological action on the human body. Different parts of plants are used including root, stem, flower, fruit, twigs exudates and modified plant organs. The phytochemical compounds include flavonoids, phenols and phenolic glycosides, saponins and cyanogenic glycosides, stilbenes, tannins, alkaloids, amines, betalains, terpenoids and some other endogenous metabolites. Plants contain many beneficial phytochemicals that are essential for the human body acting as natural antioxidants. The consumption of fruits and vegetables has been linked with several health benefits. *Garcinia pedunculata* (Amlavetasa) is an excellent cardiac stimulant, laxative and having digestive capacity used in Ayurved since 1500 BC. Its classical uses are as an excellent cardiac stimulant, laxative and having digestive activity, **0.1 mL of inoculum suspension was spread on NA plates respectively and the plates were kept in the refrigerator for 30 min for diffusion. Disc diffusion method was used. 10 µL of plant extracts were added onto the disc.** Minimum Inhibitory Concentration Assay (MIC) was used where the plant extracts were diluted from 40 to 5120 µL/mL. The organisms selected were *E. coli*, *S. aureus*, *P. vulgaris*, *K. pneumoniae*, *P. aeruginosa*, *B. cereus* and *S. marcescens*. Cultures were spread from low to high concentration of plant extracts on nutrient agar plates containing plant extract in discs. The plates were incubated at 37°C for 24 hrs and the zones of inhibition were measured.

2.2. Preparation of Plant Extracts

Powdered leaves of *Garcinia pedunculata* and *Ziziphus mauritiana* and inflorescence of *Phlogacanthus thyrsiformis* were extracted by differential extraction using Soxhlet apparatus. Plant extraction was done using cold water, hot water, and organic solvents viz., chloroform, n-hexane, benzene, isooamyl alcohol, diethyl ether and petroleum ether. Solvents were used according to elutropic series based on polarity. The extracts were filtered and concentrated to dryness under reduced pressure on a rotary evaporator (Heidolph-Germany). After evaporation of the solvents, extracts were dissolved in Dimethyl sulfoxide (DMSO) and were evaluated for their potential.

2.3. Antimicrobial Study

The test organisms selected for antimicrobial activity were *E. coli*, *Bacillus subtilis*, *E. coli*, *Staphylococcus aureus*, *Serratia marcescens*, *Klebsiella pneumoniae*, *Proteus vulgaris*, *Aspergillus niger*, *Aspergillus flavus* and *Candida albicans*. The bacterial cultures were maintained on nutrient agar (NA) slants while the fungal cultures viz., *Aspergillus niger* and *Aspergillus flavus* were maintained on Sabouraud’s dextrose agar (SDA) slants. The bacterial cultures were inoculated into a sterile nutrient broth and for the fungal cultures, the spores were scraped and inoculated into sterile Sabouraud’s dextrose broth. The flasks were kept for overnight incubation on a rotary shaker at 37°C. The cell density was adjusted with 0.5 McFarland turbidity standards to obtain final concentration of 10⁶ cells/ mL and 10⁵ spores/mL, respectively. For antibacterial and antifungal activity, 0.1 mL of inoculum suspension was spread on NA and SDA plates respectively and the plates were kept in the refrigerator for 30 min for diffusion. Disc diffusion method was used. 10 µL of plant extracts were added onto the disc. Amikacin was (10 µg /mL) used as a positive control and dimethyl sulfoxide (DMSO) as a negative control. The plates were incubated at 37°C for 24 hrs and the zones of inhibition were measured.

2.4. Phytochemical Screening

The tests for phytochemicals of the plant extracts viz., steroids, triterpenoids, alkaloids, tannins, flavonoids, diterpenes, glycosides and saponins were studied as per the standard methods.

2.5. Minimum Inhibitory Concentration Assay (MIC)

For MIC, grid method was used where the plant extracts were diluted from 40 to 5120 µL/mL. The organisms selected were *E. coli*, *S. aureus*, *P. vulgaris*, *K. pneumoniae*, *P. aeruginosa*, *B. cereus* and *S. marcescens*. Cultures were spread from low to high concentration of plant extracts on nutrient agar plates containing plant extract in discs. The plates were incubated at 37°C for 24 hrs and the MIC was recorded as.
the lowest concentration of the plant extract where the growth of the organism was inhibited.

2.6. Antioxidant Activity

The antioxidant activity was studied by ferric reducing antioxidant method\(^5\). The concentration of plant extracts viz., 10, 25, 50 and 100 mg in 1 mL of ethanol was prepared and mixed with 2.5 mL of phosphate buffer (2 M, pH 6.6), following which 2.5 mL of potassium ferricyanide (10 g/L) was added. The mixture was incubated at 50°C for 20 min and 1.5 mL of trichloroacetic acid (TCA) (100 g/L) was added and centrifuged at 3000 rpm for 10 min. The supernatant 0.5 mL was mixed with 1 mL distilled water (DW) and 0.5 mL of ferric chloride. The absorbance was measured at 665 nm. The increase in absorbance indicated the antioxidant activity of the plant extracts.

2.7. Thin Layer Chromatography (TLC) – Bioautography

The TLC-Bioautography of plant extracts was performed \(^16\).\(^17\). TLC plates were spotted with plant extracts and developed in a solvent system [chloroform: ethyl acetate: formic acid (10:8:2)]. The plates were then dried under an airstream. Inoculum was prepared in nutrient broth (NB) using McFarland turbidity standard. The TLC plates were placed in sterile petri plates, covered with 4.5 mL of inoculum, and incubated at 37°C for 15 hrs. After incubation, the plates were sprayed with an aqueous solution of tetrazolium chloride (2 mg/mL) and incubated at 37°C for 1 h\(^16\).\(^17\). The clear zones on the chromatogram indicated growth inhibition.

2.8. Standard Microbial Cultures

The standard antibiotic resistant reference plasmids viz., *E. coli* K12 (RP4), *E. coli* (pRK2013) and *E. coli* (pBR322) were procured from Microbial Type Culture Collection (MTCC), Institute of Microbial Technology, Chandigarh, India.

2.9. Plasmid Curing

The plasmid curing was performed as described earlier\(^18\). The cultures viz., *E. coli* K12 (RP4), *E. coli* (pRK2013) and *E. coli* (pBR322) were grown in the presence of plant extracts at the sub-inhibitory concentration for 24 h at 37°C and plated on Luria agar (LA) plates [LA (g/L): casein enzymatic hydrolysate:10, yeast extract:5, sodium chloride:5, agar:15]. The plates were then grown under an airstream. Inoculum was prepared in nutrient broth (NB) using McFarland turbidity standard. The LA plates were placed in sterile petri plates, covered with 4.5 mL of inoculum, and incubated at 37°C for 15 hrs. After incubation, the plates were sprayed with an aqueous solution of tetrazolium chloride (2 mg/mL) and incubated at 37°C for 1 h\(^16\).\(^17\). The clear zones on the chromatogram indicated growth inhibition.

3. RESULTS AND DISCUSSION

3.1. Antimicrobial Activity

P. thyrsiformis leaves having secondary metabolites like flavonoids, saponins, and tannin have been shown to be responsible for the antimicrobial activity of plants. Methanolic extracts showed maximum antibacterial properties against *S. typhimurium* and *S. enterico*\(^19\). *Phlogacanthus thyrsiformis* showed moderate potential antibacterial against *Bacillus subtilis*\(^19\). In the present study, benzene extract of *Garcinia pendunculata* had the highest activity against *P. aeruginosa*, with zone of inhibition 20 mm. Petroleum ether extract of *P. thyrsiformis* had antibacterial activity against *E. coli* with a zone of inhibition 24 mm. The antifungal activity of *P. thyrsiformis* extract prepared in chloroform, cold water, isoamyl alcohol and diethyl ether showed significant activity against *Aspergillus niger* with zone of inhibition 4, 7, 13 and 10 mm, respectively (Table 2). The methanol and ethyl acetate leaves extracts of *P. thyrsiformis* displayed antifungal activity against *A. niger* and *C. albicans*\(^20\). The chloroform extract of *Ziziphus mauritiana* showed the highest activity against *P. aeruginosa*, with zone of inhibition 19 mm. The antibacterial activity of *P. thyrsiformis* inflorescence extract, *G. pendunculata* and *Z. mauritiana* leaves extract against *Proteus vulgaris* and *E. coli* are shown in Figure 2 and 3, respectively. The antifungal activity of *Ziziphus mauritiana* plant extract prepared using chloroform, n-hexane, petroleum ether and isoamyl alcohol showed zone of inhibition against *Aspergillus niger* and the highest activity was found by isoamyl alcohol extract with 16 mm zone of inhibition (Table 2). The antifungal activity of *G. pendunculata* leaves extract against *Aspergillus flavus* is shown in Figure 4. The crude methanolic extract of *Ziziphus mauritiana* leaves were observed to be rich in phytochemical constituents and had significant levels of antioxidant and antimicrobial activities. The leaf extract did not show a significant level of antibacterial activity against Gram negative bacteria\(^21\). Leaves extracts of *Z. mauritiana* possessed antimicrobial activity against *Staphylococcus aureus*, *Listeria monocytogenes*, *Salmonella typhimurium* and *E. coli* with the highest total antioxidant capacity\(^22\). In the present study, all the three plant extracts using different solvents showed antimicrobial activity when compared with Amikacin. The antibacterial activity of Amikacin as a positive control against the test organisms is shown in Table 2. There is a report where five plant extracts were investigated against *B. cereus*, *S. aureus*, *E. coli*, *P. aeruginosa* and *S. typhi*. The ethanolic extracts of *Punica granatum*, *Syzygium aromaticum*, *Zingiber officinalis* and *Thymus vulgaris* were effective with variable efficiency against the bacterial strains at concentration of 10 mg/mL, while the extract of *Cuminum cyminum* was only effective against *S. aureus*\(^15\). A Study has also been done where methanolic extracts of *Berberis vulgaris*, *Cassia angustifolia*, *Cinnamomum cassia*, *Cistus monspeliensis*, *Nigella sativa*, *Punica granatum*, *Rhus tripartita*, *Withania frutescens* and *Zingiber officinalis* were tested for antibacterial activity. The plant extracts showed inhibition zones ranging from 6 to 23 mm and MIC ranged from 0.1 to 12.8 mg/mL\(^23\).

3.2. Phytochemical Analysis

The plant extracts of *Garcinia pendunculata*, *Phlogacanthus thyrsiformis* and *Ziziphus mauritiana* revealed the presence of active phytochemical compounds viz., alkaloids, saponins, steroids, triterpenes, flavonoids and diterpenes. The results of phytochemical compounds are shown in Table 3. The qualitative and quantitative phytochemical analysis of *Moringa concanensis* has been reported\(^24\) which showed the presence of alkaloids, flavonoids, phenol and carbohydrates\(^25\). The phytochemical analysis of plants viz., *Garcinia indica*, *Jatropha...
curcas; Nigella sativa; Levisticum officinale; Dracaena loureiri; Woodfordia fruticosa; Vaccinium macrocarpon; Foeniculum vulgare; Sapindus saponaria and Annona squamosa has been reported. Phytochemical screening of G. pedunculata revealed the occurrence of compounds viz., alkaloids, carbohydrates, saponin, phenolic compounds and proteins along with fixed oils and fats, glycosides, and amino acids.

3.3. Minimum Inhibitory Concentration Assay

For Garcinia pedunculata, the MIC value was found to be 2560 µL. For Phlogacanthus thrysformis, the MIC value was 1280 µL, except for Bacillus cereus whose growth was observed at 5120 µL. For Ziziphus mauritiana, the MIC value was 2560 µL, except for Serratia marcescens whose growth was observed at 5120 µL. The results of MIC of the plant extracts are shown in Table 4.

3.4. Antioxidant Activity

The absorbance was found to increase with the increase of concentration of three plant extracts (10 to 100 mg/mL) which indicated increased reducing power; thus, proving the antioxidant property (Figure 5). In the present investigation, Phlogacanthus thrysformis has shown greater antioxidant activity than the standard (H₂O₂) as well as Garcinia pedunculata and Ziziphus mauritiana. At 100 mg/mL concentration, P. thrysformis has shown maximum antioxidant activity. The leaves and flowers of P. thrysformis are good sources of natural antioxidants which are useful in treating the diseases associated with oxidative stress. Aqueous as well as methanol extract of P. thrysformis possessed versatile free radical scavenging activity. Phenolic compounds in the crude extracts of Phlogacanthus pulcherimus contributed to strong antioxidant activity; ethyl acetate and dichloromethane extracts of P. pulcherimus showed antioxidant and antiproliferative activity (Poeaim, 2016). Total antioxidant activity in terms of IC50 value was found to be the highest (11.61) in Garcinia pedunculata as compared to other species Garcinia cowa, Garcinia lancefolia and Garcinia xanthochymus of Assam. Leaf methanol extracts of nine Garcinia species from the Western Ghats exhibited remarkable in-vitro antioxidant activity against various free radicals due to the presence of high phenolic and flavonoid contents. The in-vitro evaluation of antioxidant activity of methanol extracts of medicinal plants has been studied, where the methanol extracts of C. cogygria and R. damascena exhibited potent antioxidant activity by 1, 1-diphenyl-2-picrylhydrazyl (DPPH), ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods. There is also a report on the in-vitro and in-vivo antioxidant activity of the butanol extract from the stem of Ephedra alta.

3.5. Bioautography

In TLC-Bioautography, the plant extracts viz., Garcinia pedunculata, Phlogacanthus thrysformis and Ziziphus mauritiana prepared in chloroform showed the presence of one or more active compounds. The Garcinia pedunculata plant extract showed activity against K. pneumoniae with R₆ value 0.23. The Ziziphus mauritiana plant extract showed activity against S. marcescens with R₆ value 0.76. The Phlogacanthus thrysformis plant extract did not show any activity against the test organisms. Earlier report on TLC-Bioautography detection and biological activity of antifungal compounds from medicinal plant Acorus calamus L., where clear zones of inhibition of fungal growth corresponding to the positions producing large inhibitory zones at R₆ 0.7 for fungal strains F. oxysporum, F. solani, C. gloeosporioides, B. cinerea and A. solani. Also, work has been reported on antimicrobials of medicinal plants viz., clove, cinnamon, datura and tulsi, where the maximum zone of inhibition of clove, cinnamon, datura and tulsi were observed at R₆ 0.639, 0.147, 0.803 and 0.623 respectively. Study has been done on TLC screening and evaluation of antioxidant, antibacterial activity of Onopordon macrocephalum by bioautography. Although there have been studies on phytochemical analysis of plant extracts, this is the first report on the phytochemical, antimicrobial, antioxidant activity and bioautography studies of medicinal plants viz., Garcinia pedunculata, Phlogacanthus thrysformis and Ziziphus mauritiana.

3.6. Plasmid Curing

The antiplasmid activity of plant extracts in different solvents was tested against the reference plasmids (Table 5). Among three extracts which were tested, chloroform extract of Ziziphus mauritiana demonstrated the maximum curing activity as compared to the other two, against plasmid harbouring reference strains. The chloroform extract of Ziziphus mauritiana cured E. coli K12 (RP4), E. coli (pBR322) and E. coli (pRK2013) at 62%, 57% and 49% curing efficiencies, respectively (Table 5). The petroleum ether extract of Phlogacanthus thrysformis was found to be effective for curing E. coli K12 (RP4), E. coli (pBR322) and E. coli (pRK2013) with 38%, 42% and 35% efficiencies, respectively. The plasmid curing efficiency was less with benzene extract of Garcinia pedunculata, which cured E. coli K12 (RP4), E. coli (pBR322) and E. coli (pRK2013) at 10%, 9% and 12% curing efficiencies, respectively. The plasmid cured standard strains when tested for resistance/sensitivity to antibiotics by the disc diffusion assay, were found to be sensitive to the respective antibiotics. The elimination of plasmid-determined antibiotic resistance in pathogenic strains of bacteria is of great functional importance, both in the treatment of microbial infections and in microbial genetics. Few articles in the recent years have revealed about plasmid curing in bacteria after treatment with certain plant extracts. However, such an activity regarding plant extracts of Garcinia pedunculata, Phlogacanthus thrysformis and Ziziphus mauritiana has been reported for the first time. Though Plasmids can spontaneously lose the frequency of spontaneous mutation in bacteria is less than one in 10⁸ cells. Mutagenic activity of any compound can be harmful especially in clinical applications. In the present study, plasmid curing by plant extracts of Garcinia pedunculata, Phlogacanthus thrysformis and Ziziphus mauritiana is at much higher frequency (9-62%). Hence they can be authentic plasmid curing agents. Sub-inhibitory concentrations of curing agents were used in the present research. It means that to these concentrations of compounds, the bacteria were already resistant. Therefore, it is projected that bacteria may not ever develop any way to counter the plasmid curing ability of the compounds present in the plant extracts of Garcinia pedunculata, Phlogacanthus thrysformis and Ziziphus mauritiana. The ability of these plant extracts to cure plasmid encoded antibiotic resistance in standard E. coli plasmid containing strains is significant particularly since the E. coli strains are known to act as a reservoir of antibiotic resistance genes. Garcinia pedunculata, Phlogacanthus thrysformis and Ziziphus mauritiana medicinal plants are used in the traditional Indian medicine system for hundreds of years. Hence, they are unlikely to cause any toxic / mutagenic / carcinogenic /
teratogenic effects on individuals. Thus, such root extracts as plasmid curing agents have tremendous advantage over conventional curing agents such as acriflavine, ethidium bromide, acridine orange which are known to be toxic, mutagenic, and carcinogenic. Further, these plant extracts can be used in basic research to obtain plasmid less derivatives and thus to determine plasmid encoded phenotypes in laboratory studies.

Table 1: Medicinal plants and their uses

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
<th>Plant part used</th>
<th>Uses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garcinia pedunculata</td>
<td>Kuji thekera</td>
<td>Dried fruits, leaves</td>
<td>Digestive and dysenteric properties</td>
</tr>
<tr>
<td>Philogonanthus thrysformis</td>
<td>Titafull</td>
<td>Inflorescence</td>
<td>Vermicide and also remedy of cough</td>
</tr>
<tr>
<td>Ziziphus mauritiana</td>
<td>Bogori</td>
<td>Root, leaves, fruits</td>
<td>Bleeding disorders, fever, burning sensation</td>
</tr>
</tbody>
</table>

Table 2: Antimicrobial activity of plant extracts against the test organisms

<table>
<thead>
<tr>
<th>Plant extracts</th>
<th>E. coli marcescens</th>
<th>B. cereus</th>
<th>B. subtilis</th>
<th>P. aeruginosa</th>
<th>K. pneumonia</th>
<th>S. aureus</th>
<th>P. vulgaris</th>
<th>A. niger</th>
<th>A. flavus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloroform</td>
<td>7 ± 0.00</td>
<td>15 ± 0.01</td>
<td>18 ± 0.00</td>
<td>5 ± 0.04</td>
<td>15 ± 0.01</td>
<td>10 ± 0.00</td>
<td>2 ± 0.00</td>
<td>10 ± 0.02</td>
<td>-</td>
</tr>
<tr>
<td>Benzene</td>
<td>11 ± 0.02</td>
<td>17 ± 0.01</td>
<td>13 ± 0.00</td>
<td>6 ± 0.00</td>
<td>20 ± 0.01</td>
<td>9 ± 0.00</td>
<td>10 ± 0.01</td>
<td>10 ± 0.03</td>
<td>-</td>
</tr>
<tr>
<td>Hexane</td>
<td>2 ± 0.02</td>
<td>4 ± 0.00</td>
<td>4 ± 0.02</td>
<td>10 ± 0.01</td>
<td>10 ± 0.00</td>
<td>10 ± 0.02</td>
<td>11 ± 0.00</td>
<td>9 ± 0.01</td>
<td>-</td>
</tr>
<tr>
<td>Petroleum ether</td>
<td>12 ± 0.00</td>
<td>15 ± 0.00</td>
<td>11 ± 0.01</td>
<td>7 ± 0.00</td>
<td>10 ± 0.01</td>
<td>7 ± 0.00</td>
<td>12 ± 0.00</td>
<td>13 ± 0.01</td>
<td>-</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>9 ± 0.00</td>
<td>16 ± 0.02</td>
<td>8 ± 0.03</td>
<td>3 ± 0.02</td>
<td>16 ± 0.01</td>
<td>5 ± 0.00</td>
<td>15 ± 0.02</td>
<td>9 ± 0.01</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Biochemical analysis of the plant samples

<table>
<thead>
<tr>
<th>Plant extract</th>
<th>Biochemicals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Alkaloid</td>
</tr>
<tr>
<td>Garcinia pedunculata</td>
<td>-</td>
</tr>
<tr>
<td>Philogonanthus thrysformis</td>
<td>+</td>
</tr>
<tr>
<td>Ziziphus mauritiana</td>
<td>-</td>
</tr>
</tbody>
</table>

(*+) = Present (-) = Absent
Table 4: MIC of the plant extracts against the bacterial pathogens

<table>
<thead>
<tr>
<th>Plant extracts</th>
<th>E. coli MIC in (µg/mL)</th>
<th>S. aureus MIC in (µg/mL)</th>
<th>P. vulgaris MIC in (µg/mL)</th>
<th>K. pneumoniae MIC in (µg/mL)</th>
<th>P. aeruginosa MIC in (µg/mL)</th>
<th>B. cereus MIC in (µg/mL)</th>
<th>S. marcescens MIC in (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garcinia pedunculata</td>
<td>2560±0.00</td>
<td>2560±0.04</td>
<td>2560±0.00</td>
<td>2560±0.02</td>
<td>1280±0.00</td>
<td>1280±0.00</td>
<td>1280±0.03</td>
</tr>
<tr>
<td>Phlogacanthus thyrsiformis</td>
<td>1280±0.01</td>
<td>1280±0.01</td>
<td>1280±0.02</td>
<td>1280±0.01</td>
<td>5120±0.02</td>
<td>1280±0.02</td>
<td>1280±0.02</td>
</tr>
<tr>
<td>Ziziphus mauritiana</td>
<td>5120±0.02</td>
<td>5120±0.00</td>
<td>5120±0.03</td>
<td>2560±0.02</td>
<td>2560±0.01</td>
<td>5120±0.03</td>
<td>5120±0.03</td>
</tr>
</tbody>
</table>

Table 5: Plasmid curing by plant extracts

<table>
<thead>
<tr>
<th>Strain (Plasmid)</th>
<th>Antibiotic resistance markers</th>
<th>Petroleum ether extract Phlogacanthus thyrsiformis</th>
<th>Sub-inhibitory conc. (µg/mL)</th>
<th>Efficiency of curing (%)</th>
<th>Chloroform extract Ziziphus mauritiana</th>
<th>Sub-inhibitory conc. (µg/mL)</th>
<th>Efficiency of curing (%)</th>
<th>Benzene extract Garcinia pedunculata</th>
<th>Sub-inhibitory conc. (µg/mL)</th>
<th>Efficiency of curing (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli K12 (RP4)</td>
<td>Ap<sup>+</sup>, Km<sup>+</sup>, Tc<sup>+</sup></td>
<td>640±0.00</td>
<td>38±0.01</td>
<td>2560±0.03</td>
<td>62±0.01</td>
<td>1280±0.02</td>
<td>10±0.00</td>
<td></td>
<td>640±0.03</td>
<td>9±0.00</td>
</tr>
<tr>
<td>E. coli (pBR322)</td>
<td>Ap<sup>+</sup>, Tc<sup>+</sup></td>
<td>640±0.03</td>
<td>42±0.03</td>
<td>1280±0.04</td>
<td>57±0.02</td>
<td>640±0.03</td>
<td>9±0.00</td>
<td></td>
<td>640±0.03</td>
<td>9±0.00</td>
</tr>
<tr>
<td>E. coli (pRK2013)</td>
<td>Ap<sup>+</sup>, Km<sup>+</sup></td>
<td>640±0.01</td>
<td>35±0.02</td>
<td>2560±0.01</td>
<td>49±0.01</td>
<td>1280±0.01</td>
<td>12±0.00</td>
<td></td>
<td>1280±0.01</td>
<td>12±0.00</td>
</tr>
</tbody>
</table>

Growth from SIC was serially diluted and plated on Luria agar to get isolated colonies. 300 colonies were replica plated onto Luria agar and Luria agar containing antibiotic (10 µg/mL). Colonies that grew on Luria agar but not on Luria agar containing antibiotics were considered as cured colonies.

Fig 1: a) *Garcinia pedunculata* leaves and fruits b) *Phlogacanthus thyrsiformis* Inflorescence and c) *Ziziphus mauritiana* leaves used in dried form for the preparation of extracts
Fig 2: Antibacterial activity of *P. thyrsiformis* inflorescence extract, *G. pedunculata* and *Z. mauritiana* leaves extract against *Proteus vulgaris*

Fig 3: Antibacterial activity of *P. thyrsiformis* inflorescence extract, *G. pedunculata* and *Z. mauritiana* leaves extract against *E. coli*

Fig 4: Antifungal activity of *G. pedunculata* leaves extract against *Aspergillus flavus*
In the present investigation, *Phlogacanthus thyrsiformis* has shown greater antioxidant activity as compared to standard (H$_2$O$_2$) as well as *Garcinia pedunculata* and *Ziziphus mauritiana*. At 100 mg/ml concentration, *Phlogacanthus thyrsiformis* has shown maximum antioxidant activity.

4. CONCLUSION

The findings and the outcome of this research may be useful from the point of view of therapy of patients as the plant extracts of *Garcinia pedunculata*, *Phlogacanthus thyrsiformis* and *Ziziphus mauritiana* can serve as a potential source of antimicrobial and antioxidant agents which would be useful in controlling the growth of various pathogenic bacteria. The present investigation has discovered that extracts of plants of *Garcinia pedunculata*, *Phlogacanthus thyrsiformis* and *Ziziphus mauritiana* could be effectively used to remove the plasmid encoded antibiotic resistance. These results are of significance as plasmid encoded antibiotic resistance is a serious challenge for clinicians to treat. Ineffective antibiotics could become effective if plasmid encoded antibiotic resistance is removed from the population.

5. AUTHOR CONTRIBUTION STATEMENT

The experimental work has been done by Aditi Jedhe and Vaishnavi Choudhary. Aparna Gunjal has planned, designed the experiments, and aided in manuscript writing. Rajashree Patwardhan, a corresponding author has guided in designing the experiments and has played a dominant role in manuscript writing.

6. CONFLICT OF INTEREST

Conflict of interest declared none.

7. REFERENCES

32. Karagöz A, Artun FT, Özcan G, Melikoğlu G, Anil S, Kültür Ş, Sültüpinar N. In vitro evaluation of...

