An Early Year History of Emergence of Multidrug-Resistant Staphylococcus aureus in West Bengal: A Review

Kartik Shaw1* and Sahana Mazumder2

1Research Scholar, Department of Physiology, Rammohan College, University of Calcutta, Kolkata, India
2Associate Professor, Department of Physiology, Rammohan College, University of Calcutta, Kolkata, India

Abstract: Staphylococcus aureus has been recognized as a causative agent of human diseases for more than 100 years. Staphylococcus aureus can cause numerous fatal diseases including sepsis, soft tissue injury, urinary tract infection. Emergence of multidrug resistance in Staphylococcus aureus is a very common problem worldwide. Multidrug resistant (MDR) bacterium can be identified if the strain is non-susceptible against at least one antibiotic agent in three or more antimicrobial categories. Multidrug resistant Staphylococcus aureus are becoming resistant against various antibiotics like azithromycin, clarithromycin, clindamycin, gentamycin, amikacin, imipenem and other β-lactam antibiotics. Resistance against methicillin and vancomycin can be said as methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Staphylococcus aureus (VRSA) respectively. However, 11% to 56% of the available Staphylococcus aureus are methicillin resistant in West Bengal. Whereas, the emergence of VRSA was found to be equally high in this geographical region. Vancomycin resistant Staphylococcus aureus infections is too hard to treat, as vancomycin is said to be the last resort of antibiotics to treat methicillin resistant Staphylococcus aureus. These emergence of resistance against several antibiotics may include many ways like inhibition of drug entry into the cell, inactivation of β-lactamase enzyme, etc. several genes are also responsible for the drug resistance like mecA, vanH, vanA and vanX. The present review article deals with the research done on the antibiogram of Staphylococcus aureus within the last decade in West Bengal. It also puts light on the various methods by which the Staphylococcus aureus might become resistant against antibiotics and also tries to deals with the genetics involved in it.

Keywords: Staphylococcus, MRSA, VRSA, Methicillin, Vancomycin, Multidrug.
1. INTRODUCTION

Staphylococcus aureus has been recognized as a cause of human diseases for more than 100 years and is a normal flora of human beings as well as of animals. It has an opportunistic behaviour, and can be found on skin, in nose, throat, mouth, blood, and intestinal tract causing some life-threatening diseases such as sepsis, soft-tissue injury, UTI, endocarditis, respiratory infections, intestinal tract infections, bloodstream infections, Surgical site infections (SSI), Staphylococcal scalded skin syndrome (SSSS), etc. Apart from the entire above, S. aureus can also cause toxic shock syndrome which belongs to a class of toxin-mediated disease that promotes multisystem disorder in human beings due to the Staphylococcal toxic shock syndrome toxin (TSST-1). Staphylococcal enterotoxin (SE) can be of six different groups as per serological classification established. The groups are: Staphylococcal Enterotoxin A, Staphylococcal Enterotoxin B, Staphylococcal Enterotoxin C, Staphylococcal Enterotoxin D, Staphylococcal Enterotoxin E and Staphylococcal Enterotoxin H having molecular weight falling between 26,000 to 29,600 Dalton. S. aureus frequently causes surgical wound infections with a high prevalence rate ranging from 4.6% to 54.4% worldwide. To control S. aureus infection, different kinds of antibiotics are being used by medical practitioners. S. aureus was one of the common pathogens causing a nosocomial infection that was eradicated by just penicillin. But recently, various antibiotics are failing to treat S. aureus generated infection in human beings. The journey started from the discovery of penicillin in 1929. Before 1944, Penicillin was treated as a potent agent to treat S. aureus infection as in the same year first penicillin-resistant S. aureus was isolated and identified. The present scenario for penicillin is really worse, more than 90% S. aureus strains are resistant to penicillin. Not only penicillin, but S. aureus has also developed resistance against erythromycin, roxithromycin, cotrimoxazole, ciprofloxacin, chloramphenicol, streptomycin, cefotaxime, kanamycin, oxacillin, norfloxacin, amoxiclav, fucidin, methicillin, vancomycin and many more. Though the prevalence of resistance against vancomycin, linezolid is very low but will rise in a very short period of time, if any step is not taken by the government or any other authority. Now-a-days, researchers are much interested in methicillin and vancomycin resistant Staphylococcus aureus strains i.e., MRSA (methicillin resistant Staphylococcus aureus) & VRSA (vancomycin resistant Staphylococcus aureus). Researchers found many ways like horizontal transfer of genes from outside sources, chromosomal mutations and also antibiotic selections, which allow Staphylococcus aureus isolates to grow resistance against methicillin and vancomycin. It is believed that the resistance property can be transferred from one bacterium to another with the transfer of SCCmec gene and PVL gene for methicillin19 and for vancomycin it is vanH, vanA, & vanX gene. This van gene is a part of transposon Tn1546 found in VRE (vancomycin resistant Enterococcus)11,22. Definition for multidrug-resistant bacteria varies by country as both the prevalence of specific bacterial strain/species as well as the use of antibiotic agents vary accordingly. However, the globally accepted definition of MDR (Multidrug Resistant) bacteria is, if any strain or species acquires non-susceptibility towards at least one of the few most effective antimicrobial agents/antibiotic groups like penicillin, amnyoglycoside, etc. In the same way, XDR (Extensive Drug resistant) isolates can be defined as their nonsusceptibility towards at least one of the few specific/common antimicrobial agents, so to say that the bacterial isolates remain susceptible to only one or two of the rare and PDR (Pan drug Resistant) as non-susceptibility to all agents in all available antimicrobial categories. Specific strains like MRSA or VRSA are not only resistant to methicillin or vancomycin respectively, but also they show resistance against other potent antibiotics. Hence, MRSA, VRSA are critical MDR isolates present in our environment. In India, prevalence of MRSA has been increased from 29% to 47% between a tenure of 6-7 years (2008-2014). Whereas, the nations who implemented some preventive measures against AMR (antimicrobial resistance) recorded a decrease in prevalence of MRSA. More than 50000 new-born deaths annually in India due to pathogens resistant to first line antibiotics. According to a report by the Centre for Disease Dynamics, Economics & Policy, about 2 million deaths can be projected to occur in India by 2050 due to the increase in AMR. Death rate may be 10 million per year globally by the year 2050 and will cost 100 trillion dollars, if proper actions are not taken to deal with the AMR.

1.1. RELEVANCE OF THE STUDY

Staphylococcus aureus flora and its infection in humans are much common all over the world. But when we see the occurrence rate in West Bengal, it is a little bit disappointing that very few research articles can be seen about the prevalence and epidemiology of S. aureus infection. After searching for data regarding Staphylococcus aureus drug resistance in west Bengal online, almost 250 search results, we could find 65 related articles and 40 were selected for the study, as those articles were enriched with the information on Staphylococcus aureus, MDR, MRSA, VRSA, genetic epidemiology and prevalence in West Bengal. After searching with the above said keywords in esteemed journals like Springer, Nature, BMC & Elsevier, 94 results were observed in the recent years (after 2010) and 12 articles were selected for the study, as those articles were relevant to the aim of the present study.

We aim to figure out the following points specified for Staphylococcus aureus in West Bengal:

- The current status of the emergence of MDR.
- Genetic characteristics of the MDR Staphylococcus aureus isolated and studied.
- Prevalence of different modes of acquiring infections.

The present study will be a little contribution as a review with reference to the active and fruitful works done on drug resistance of Staphylococcus aureus in West Bengal.

1.1.1. HOW DO OUR BODY REACT TO THE Staphylococcus aureus

Our body has professional phagocytes such as neutrophils, macrophages and dendritic cells to engulf the microorganisms. Upon internalization by macrophages it is assumed that S. aureus confined within the phagosome following its maturation and fusion with endosomes and lysosomes, which creates an incompatible environment for invading microorganism, boosting acidification, augmentation of ROS, and other charged antimicrobial peptides. Which further reduces the chances of severe infection inside the body.
1.2. HOW BACTERIA DEVELOP RESISTANCE AGAINST ANTIBIOTICS?

There is evidence to explain the development of antibiotic resistance by bacteria by various means like enzymatic degradation of functional groups of antibiotic, cell wall thickening/modification, etc. There are three basic mechanisms which allow a bacterium to grow resistance against any antibiotic agent – [1] Enzymatic degradation of antibacterial drugs, [2] Alteration of bacterial proteins that are antimicrobial targets, [3] Changes in membrane permeability to antibiotic agents. Penicillin and other β-lactam antibiotics inhibit the bacterial growth by inhibiting the cell wall synthesis. PBPs (Penicillin binding proteins) are the final key element for cell wall synthesis by transpeptidation acrosslinking peptidoglycan chains by the process transpeptidation. And these PBPs are the primary target for β-lactam antibiotics. Upon binding of β-lactam with PBPs blocks the transpeptidation leading to failure of cell wall synthesis. Cell wall lysis, disruption of cell shape and inhibition of cell division can be the results upon binding of β lactam to PBPs 1, 2 and 3 respectively. Other than binding with different PBPs, β-lactam can bind with murein hydrolyases which is an autolytic enzyme that causes a nick in the cell wall to make a space for new peptidoglycan synthesis so that the cell wall will be enlarged. β-lactam induces unsuppressed activity of murein hydrolyases resulting lysis of cell wall. Now coming to the resistance against penicillin and β-lactam antibiotics, there are three classes of enzymes produced by different gram-positive and gram-negative bacteria, that can hydrolyse β-lactam antibiotics – [1] β-lactamases, [2] acylases and [3] esterases. These enzymes are able to degrade the β-lactam nucleus of the β-lactam antibiotics, facilitating the bacteria to grow resistance against the group of antibacterial. The β-lactamases can hydrolyse the β-lactam bond to acidic derivatives, which do not have any antibacterial property. Alteration of the β-lactam antibiotics lead to the production of some newer antibacterial agents like methicillin, oxacillin, etc. Somehow bacteria manage to develop resistance against these newer antibiotics too with the production of an altered PBP2 enzyme i.e., PBP2a or PBP2'. Even after the administration of methicillin (β lactam antibiotic), PBP2a, bacteria exhibit transpeptidation and cell wall synthesis and thus they remain resistant to methicillin. The expression of PBP2a protein is regulated by the gene mecA which is located on the mobile genetic element, SCCmec (SCC: Staphylococcal cassette chromosome) elements. Then after emergence of MRSA (methicillin-resistant Staphylococcus aureus) lead to finding of some other antibiotics. Vancomycin came into action and is a unique glycopeptide, a fermentation product of streptomyces, structurally unrelated to any of the earlier antibiotics. Vancomycin inhibits the cell wall synthesis by preventing the polymerization of the phosphodisaccharide-pentapeptide lipid complex by binding to the free carboxyl end of the peptides containing D-allyl-D-alanine during the second stage of its synthesis. It is postulated that vancomycin causes a steric hindrance for peptidoglycan synthesis and so cell wall synthesis disrupts. It has also been seen that vancomycin also alters the permeability of the cell membrane and inhibits the nucleic acid synthesis. Bacteria can grow resistance against vancomycin due to the presence of van gene operon encoding two enzymes, one of which can modify vancomycin-binding target by replacing C-terminal D-Ala by D-Lactate or D-Serine and second enzyme can remove the vancomycin-binding target. Thus, it may all lead to the emergence of vancomycin resistant bacteria. Bacteria are capable of preventing drug access to targets by various means – [1] Local inhibition of drug access, [2] Drug specific efflux pumps and [3] Non-specific inhibition of drug access. Which includes the apparent change in ribosomal conformation, proton motive force dependent outward pumping of drug with the help of specific proteins, and mutation in coding sequence of porin may also reduce the permeation of drug. Hence bacteria may grow resistance against the particular antibiotic agent or against the group of antibiotics.

<table>
<thead>
<tr>
<th>Antibiotic/Group</th>
<th>Mode of action of growing resistance against antimicrobial agents</th>
<th>Mechanism of resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillins and cephalosporins</td>
<td>Enzymatic inactivation of β-lactamase and alteration of PBPs.</td>
<td></td>
</tr>
<tr>
<td>Monobactams</td>
<td>Enzymatic inactivation of β-lactamase.</td>
<td></td>
</tr>
<tr>
<td>Carbapenems</td>
<td>Enzymatic inactivation of β-lactamase.</td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>Glycopeptide access inhibition.</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Production of dihydrofolate reductase.</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Increased production of p-aminobenzoic acid.</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Enzymatic modification by acetylation, phosphorylation.</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>Decreased drug permeability.</td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td>Enzymatic modification by esterase.</td>
<td></td>
</tr>
<tr>
<td>Lincosamides</td>
<td>Enzymatic modification by nucleotidyl action or phosphorylation.</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Active efflux preceded by chemical modification.</td>
<td></td>
</tr>
<tr>
<td>Quinolones</td>
<td>Alteration of DNA gyrase.</td>
<td></td>
</tr>
</tbody>
</table>

1.3. MDR STAPHYLOCOCCUS AUREUS IN WEST BENGAL

As we have already discussed the introduction and definition of MDR. Very less or no article could be found regarding antibiograms, which could claim that Staphylococcus aureus studied were not resistant for each and every antibiotic set they have used in their study. Therefore it can be said that the availability of PDR is very less. Whereas MDR and XDR isolates can be found more often. There are a lot of antibiotics, used as major life saving drugs. But the misuse of antibiotics during therapy is the major cause of generation of resistance in bacteria or drug resistant disease-causing organisms in the environment. Study conducted by Balaram et al in 2016 revealed that, out of 20 Staphylococcus aureus isolated from 36 pus samples from a tertiary care hospital of West Bengal, 100% were resistant for penicillin G, ampicillin, cefotaxime, oxacillin, and amoxiclav antibiotics.
1959. But the first MRSA was reported in England.

Staphylococcus aureus compared to MSSA (methicillin-sensitive methicillin-resistant Staphylococcus aureus) (community acquired methicillin resistant Staphylococcus aureus). Another kind of MRSA strain has also emerged due to increased use of antibiotics in animal feed, i.e., LA MRSA (livestock associated MRSA). At present the potential epidemiology of CA MRSA strain is replacing HA MRSA in hospitals of India. The first CA MRSA case began to report in the mid-1990s in Australia, New Zealand, US, UK, France, Finland, Canada and Samoa. Study conducted on HCW (health care workers) of Medinipur Medical College (West Bengal) in 2014 concluded 21.47% positive nasal carrier for S. aureus, among which 30.7% were MRSA. More or less, the same study conducted by Kulshrestha et al in 2019 revealed that 95.3% HCW were positive nasal carriers for Staphylococcus aureus and 11% HCW had positive MRSA colonization. Another study performed in RG Kar Medical College and Hospital concludes 124 S. aureus colonization out of 136 breast abscess pus samples. Among which 70 (56.5%) strains were MRSA. Study conducted in a dental college of Kolkata, revealed 34 positive S. aureus cultures from 66 pus samples. Out of which 14 (41.2%) isolates were identified as MRSA. One more cross-sectional study was conducted on SSI (surgical site infections) for 3.5 years. 15.51% SSI were documented, among which 34.93% (1049) were due to Staphylococcus aureus. 25.45% Staphylococcus aureus were positive MRSA. Amit et al concluded that 70% MRSA were observed in their study, they have conducted in Midnapur Medical College and Hospital. Another study of RG Kar Medical College and Hospital revealed that 102 positive S. aureus colonization was observed among 226 pus samples. Out of 102 Staphylococcus aureus, 36 (35.3%) were documented as MRSA. Study on CA MRSA by Prashant et al, showed 90 (22.7%) Staphylococcus aureus out of 395 samples studied. And 80 (20.2%) MRSA isolates as well.

1.4. PREVALENCE OF MRSA IN WEST BENGAL

Methicillin (originally called calbenin) was the first antibiotic in a class (β-lactamase-resistant penicillins) to be used to treat penicillin resistant Staphylococcus aureus infection in 1959. But the first MRSA was reported in England and became a major worldwide nosocomial pathogen. Multicentre MRSA surveillance data from China and India suggests that MRSA accounts for a substantial burden of diseases in the above mentioned countries. Primarily there are two kind of MRSA strains can be found, first HA MRSA (hospital acquired/hospital associated MRSA (methicillin resistant Staphylococcus aureus) and the second is CA MRSA (community acquired methicillin resistant Staphylococcus aureus). The least resistance was observed for doxycycline (12%) followed by cefuroxime (70%), clindamycin and gentamicin (62%), trimethoprim-sulfamethoxazole (40%) and amikacin (20%). The least resistance was observed for amoxyclav (12%) and ampicillin (25.45%). But they have also found MRSA, which is already MDR. Most significant difference between patients with MRSA infections was due to MDR. They could not find any significant difference between patients with MRSA infections compared to MSSA (methicillin-sensitive methicillin-resistant Staphylococcus aureus) isolates and their genetic epidemiology.

1.5. GENETICS FOR MRSA

The emergence of MRSA was attributed to the expression of a protein that binds penicillin with low affinity (PBP2a). This protein is encoded by the genes, mec A (2007bp), mecB, mecC26 carried on a genomic island called Staphylococcal Cassette Chromosome mec (SCCmec), 52kb. As per the International Working Group on classification of SCC elements (IWG-SCC), eleven (I-XI) genotypes of MRSA have been identified by Liu et al, till 2016. Some researchers suggest that the SCCmec element in MRSA has been differentiated into 12 different genetic types (I-XII). HA

Table 2: Occurrence of MRSA and antibiotics for which the MRSA isolates were resistant.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Percentage of Occurrence of MRSA</th>
<th>Resistant for other antibiotics</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30.7%</td>
<td>Cefotaxim, Amoxyclavin, Ciprofloxacin, Azithromycin, Gentamycin and Levofloxacin.</td>
<td>Satpathi et al, 2015</td>
</tr>
<tr>
<td>2</td>
<td>11%</td>
<td>Macrolide and Levofloxacin</td>
<td>Kulshrestha et al, 2019</td>
</tr>
<tr>
<td>3</td>
<td>56.5%</td>
<td>Amoxyclav, Cephalexin, Clindamycin, Erythromycin, Gentamicin, Tetracycline</td>
<td>Kumar et al, 2018</td>
</tr>
<tr>
<td>4</td>
<td>41.2%</td>
<td>Meropenem, Tazobactam/Piperacillin, Clindamycin</td>
<td>Batabyal et al, 2012</td>
</tr>
<tr>
<td>5</td>
<td>25.45%</td>
<td>Clindamycin, Cefotixin, Cotrimoxazole, Clarithromycin, Gentamicin, Levofloxacin.</td>
<td>Bhattacharya et al, 2016</td>
</tr>
<tr>
<td>7</td>
<td>35.3%</td>
<td>Amoxyclavin, Azithromycin, Clindamycin, Cefuroxime, Cotrimoxazole.</td>
<td>Bhattacharya et al, 2018</td>
</tr>
<tr>
<td>8</td>
<td>20.2%</td>
<td>Penicillin, Erythromycin, Clindamycin, Ciprofloxacin, Cotrimoxazole, Gentamicin.</td>
<td>Jindamwar et al, 2016</td>
</tr>
</tbody>
</table>

Above isolated and studied MRSA samples were found to be resistant for many potent antibiotic agents such as penicillin, levofloxacin, erythromycin, gentamicin. Though, some of them showed sensitivity towards a few antibiotics like vancomycin, linezolid, cotrimoxazole, etc (as per the references provided in the table).

1.6. OTHER ANTIBIOTICS FOR MRSA

...
MRSA is traditionally associated with SCCmec type I-III, while CA MRSA is associated with type IV, V & VII. Skin and soft-tissue infections are predominantly caused by Panton Valentine Leukocidin (PVL) producing *Staphylococcus aureus* isolates, as the leucocidal activity of these strains increases their pathogenicity and also provides survival advantage to the organisms. PVL is one of the important cytotoxins produced by *S. aureus* and is encoded by two genes, LukSF-PV and LukF-PV. PVL gene can also be used for *S. aureus* identification. Literature reveals that epidemiology CA-MRSA seen MSSA (methicillin-sensitive *Staphylococcus aureus*) can be seen. Other than SCCmec & PVL, nuc & hlb genes can also be used for *S. aureus* identification.

1.6. PREVALENCE OF VRSA IN WEST BENGAL

Emergence and spread of MRSA isolates lead to failure of treatment for *Staphylococcus aureus* infection in human beings, causing increased mortality and morbidity. Then vancomycin (a glycopeptidase) became the only antibiotic agent to treat MRSA infection, as MRSA are not only resistant to methicillin but also for a handful number of antibacterial agents. The very first *S. aureus* emerged in 1997, with reduced susceptibility against vancomycin in Japan. And in 2002, first VRSA (vancomycin resistant *Staphylococcus aureus*) emerged in the US, whereas in India (Kolkata, West Bengal) it was first observed in 2008. Various studies also suggest the incidence of VISA (vancomycin intermediate *Staphylococcus aureus*) throughout the world. Though the prevalence of VISA & VRSA is very less in India, researchers can find some VISA and VRSA, while testing in their laboratories. Susmita et al. showed the emergence of 4 VISA isolates with MIC value between 4-6mg/L in West Bengal. The strains were found to be resistant against penicillin, cefotaxime, co-trimoxazole, cefoxitin, ciprofloxacin, oxacillin, gentamicin, netilmicin, ofloxacin, piperacillin-tazobactam. In 2011, researchers from Vidyasagar University, West Bengal found 8 VRSA isolates among 30 *Staphylococcus aureus* they have studied and those isolates were also resistant against erythromycin, cefotaxime, gentamicin, streptomycin, tetracycline, chloramphenicol, norfloxacin, methicillin. Another study from the same university revealed 38 VRSA isolates among 70 MRSA studied with MIC value ranging from 16-32mg/L and those strains were also specifically resistant against methicillin and other antibiotic agents. Prevalence of VRSA and VISA bacteria is not only restricted to human beings of West Bengal, nowadays, researchers detected VRSA isolates in bovine and caprine milk also. Debraj et al found 7 VISA and VRSA isolates ranging MIC value from 8 to 256 mg/L in West Bengal in 2016. All the isolates were also resistant to methicillin and carried the meCA gene.

1.7. GENETICS FOR VRSA

Though the genetic mechanism of VRSA emergence is well known, researchers found a dramatic role of VRE (vancomycin resistant *Enterococcus*) for the birth of VRSA. Transposon Tn1546 has been identified as the main precursor of the birth of vancomycin resistance in *Staphylococcus* through VRE. The evidence was supported and elaborated by Panthee et al, and they also said that the gene conferring resistance to vancomycin and methicillin were common in VRSA isolates. The marker genes for VRSA viz., VanH, VanA, VanX are said to be responsible for the development of resistance against vancomycin.

1.8 HOW TO COMBAT WITH THESE MDR BACTERIA

Basic rule to prevent the emergence of MDR bacteria may include the proper use of antibiotics, as improper use of antibacterial agents is the primary cause of emergence of AMR strains. There are lot other ways may be involved to prevent the emergence of MDR. Biosynthesized nanoparticles may be a better way to combat or to overcome the situation. A review from our laboratory revealed that biogenically prepared silver nanoparticles are potent antibacterial agent against various bacteria including *Staphylococcus aureus*, *Escherichia coli*, *Bacillus sp.*, *K. pneumoniae*, etc. more research is required in case of the antibacterial effect of biologically prepared nanoparticles on MDR bacteria.

2. CONCLUSION

After reviewing more than 50 articles pertaining to the antibiogram of *Staphylococcus aureus* in West Bengal, it may be concluded that the prevalence of multidrug resistant *Staphylococcus aureus* is a real threat in this geographical area. *Staphylococcus aureus* here found to be resistant against various important antibiotics, such as amoxycllicin, erythromycin, gentamicin, clindamycin, chloramphenicol, levofloxacin, methicillin; among which resistance against methicillin and vancomycin are an attractive field of research, to find out a stronger way to combat the situation arising out of these MDR *Staphylococcus aureus*. The data showed that the percentage of the available MRSA isolates in this sector varies between 11% to 56%, however regarding VISA the study showed that though the emergence of VRSA in India is comparatively less, but in West Bengal it was found in a higher range. In one study it has been shown that out of 70 MRSA, 38 isolates were found to be VRSA. In another laboratory 8 VRSA were identified out of 30 MRSA. Causes of emergence of drug resistance in *Staphylococcus aureus* may include inactivation of β-lactamase, glycopeptide access inhibition, reduced drug permeability into the bacterial cell, alteration of DNA gyrase, Cell wall thickening, etc. Moreover the gene responsible for drug resistance, according to the study, may be transferred horizontally from one bacterium to another. Biosynthesized nanoparticles may act as potent antibacterial agent to combat with these kinds of antimicrobial resistant *Staphylococcus aureus* especially silver and gold nanoparticles. The upcoming researches in different laboratory worldwide indicates that a brighter future in this sector is bound to come.

3. AUTHORS CONTRIBUTION STATEMENT

Mr. Kartik Shaw has gathered the data and articles for this review. Dr. Sahana Mazumder conceptualized and provided necessary inputs towards designing the manuscript. Both the authors have equal contribution for writing the manuscript.

4. FUNDING ACKNOWLEDGEMENT

We acknowledge The Department of Science and Technology, Government of West Bengal (Project memo number: 61(Sanc.)/ST/P/S&T/1G-14/2015) for providing the resources and financial support.
4. CONFLICT OF INTEREST

Conflict of interest declared none.

5. BIBLIOGRAPHY

