Review on Medicinal Importance of Moringa Olifera Leaf for Treating Anemic Conditions

Faculty of Pharmacy, Dr. M.G.R. Educational and Research Institute, Velappanchavadi, Chennai-77, Tamilnadu, India

Abstract: Moringa olifera is a traditional medicinal plant that belongs to family moringaceae. It is also called as “Miracle tree”. It is rich in alkaloids, flavonoids, essential amino acids and considered as one of the highly nutritious plants. Moringa olifera a multiuse plant is used as a food and medicinal uses. It has various pharmacological activities such as analgesic, anti-inflammatory, antipyretic, anticancer, antioxidant, nootropic, hepatoprotective, gastroprotective, antiallergy, antioxidant, hepatoprotective, gastroprotective, cardiovascular, antiobesity, antiasthamatic and antidiarrheal properties. This review is a collective summary of phytochemical, pharmacological activity and therapeutic importance of this medicinal herb. Moringa olifera has numerous medicinal uses and it is used to treat many diseases conditions. The review has focused on various properties of Moringa Olifera and therapeutic importance of moringa olifera and its chemical constituents Moringa oleifera is considered to be one of the beneficial plant which has higher medicinal values. Its various nutritional properties made the people across the world to use for its health benefits. The leaf of moringa is considered to have more effective property in curing many diseases though other parts of Moringa oleifera possess less effective properties. The chemical compound of Moringa leaf has high content when compared to other parts and some chemical compounds are present only in leaf of Moringa. Moringa leaf can be used for various health conditions such as Anaemia, Diabetes, Asthma, Inflammation, and Ulcer, Tumor growth, Microbial growth and Plasmodia (Malaria). Anaemia is one of the threatening disorder which is spread all over the world, anaemia occur due to various conditions in which majority is iron deficiency anaemia due to low iron content in plasma. The decrease in haemoglobin will give rise to anaemic condition. From traditional medicine literature study, IDA can be treated by daily consumption of Moringa leaf syrup. The review work focus on the medicinal uses, chemical composition and effect of Moringa leaf on Iron deficiency anaemia. The Moringa plant has interesting fact that it is used in war as energy drink, historical evidence shows Maurian troops uses Moringa juice as energy drink. It is also named as “Miracle Tree” due to its high medicinal values.

Keywords: Moringa Olifera, Phytochemistry, Moringaceae, Therapeutic importance.
1. INTRODUCTION

Moringa olifera commonly known as drumstick tree, is widely present in hilly areas of India and Asian countries. It is well grown in other countries such as Nepal, Philippines, Sri Lanka and United states of America. The plant grows very quickly in fertile soil. The leaves of *Moringa Olifera* are not shed during the dry season. Its leaves are highly nutritious. The leaves of *Moringa* is rich in amino acids, minerals and natural antioxidants. The dried parts of *Moringa olifera* can be stored as their chemical and nutrient content is not lost during storage. *Moringa olifera* is considered as best choice to treat anaemia. Other synonym of the plant includes 'drumstick tree'. It can be grown in draught condition too. All parts of the plant are included for nutritive value. They are utilised for commercial and nutritional purpose. *Moringa olifera* leaves are rich in essential active constituents such as minerals, vitamins and other energy producing sources. Extract of *moringa* leaves have various nutritional values. Plant has potent activities such as anticancer, anticoagulant, anti-inflammatory, antidiabetic and antimicrobial agent. The scientific data proves that *Moringa olifera* has extensively used for treating various disorders. Probably more billions of people in the world suffer from anaemia. More than 50% of anaemic cases are due to iron deficiency. Anaemia can cause disruption of physical and mental development. 162 billion people in the world suffers from anaemia. Women are highly prone to Iron deficiency anaemia. It lowers intellectual, learning habit, inability to perform exercise, impairment in thinking, development and behaviour.

1.1 MORINGA OLIFERA

(MO) leaf belongs to the family Moringaceae is a kind of herbaceous plant has been extensively used to treat malnutrition. *M. olifera* has 9 times more protein than yoghurt, 17 times more calcium than milk, 7 times more vitamin-C content than orange, 25 times more iron content than spinach and 10 times more vitamin-A content than carrot as shown in table 1. It is traditionally used for anaemia, anxiety, asthma. Chemical constituent of *moringa* leaf have been reported to have antihypertensive effects, anticancer, and antibacterial activity, namely 4-(4′-O-acetyl-α-L-rhamnopyranosyloxy) benzyl isothiocyanate, 4-(α-L-rhamnopyranosyloxy) benzyl isothiocyanate, niazimicin A and B ptery-gospermin, benzyl isothiocyanate, and 4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate. Traditionally some people uses *Moringa oleifera* leaves as treating anemia hence review focused the importance to carry out clinical study on moringa leaf in future.

1.2 PHYTOCHEMISTRY

A *Moringa olifera* plant has been shown in figure:1 and it is distributed all over the country and its important chemical constituents are shown in Table 2.

1.3 BIOACTIVE COMPONENTS IN MORINGA OLEIFERA

Fresh leaves from *Moringa oleifera* are a good source of vitamin A. It is well established that vitamin-A has important functions in vision, reproduction, embryonic growth and development, immune competence and cell differentiation. Flowers contain sucrose, amino acids, alkaloids, and flavonoids, such as rhamnetin, isoquercitrin, and kaempferitrin. Whole pods contain isothiocyanate, thiocarbamates, nitrile, O-[2′-hydroxy-3′-(2′′-heptenyloxy)]-propyl undecanoate, methyl-β-hydroxybenzoate, and O-ethyl-4-[(α-l-rhamnosyloxy)-benzy] carbamate. Fruits contain cytokines, whereas seeds contain high concentrations of benzylglucosinolate, 4-(α-L-rhamnopyranosyloxy)-benzylglicosinolate, 4-(α-L-rhamnosyloxy) benzylisothiocyanate, 4-(α-L-rhamnosyloxy) phenylacetonitrile, and O-ethyl-4-(α-L-rhamnosyloxy) benzyl carbamate.
Table 1. Chemical composition of Maringa oleifera pods meal

<table>
<thead>
<tr>
<th>Chemical Composition</th>
<th>Proportion</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>8.05</td>
<td>g/100 g</td>
</tr>
<tr>
<td>Crude protein</td>
<td>18.98</td>
<td>g/100 g</td>
</tr>
<tr>
<td>Ether Extract</td>
<td>2.34</td>
<td>g/100 g</td>
</tr>
<tr>
<td>Ash</td>
<td>7.88</td>
<td>g/100 g</td>
</tr>
<tr>
<td>Minerals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>805</td>
<td>mg/100 g</td>
</tr>
<tr>
<td>Potassium</td>
<td>2815</td>
<td>mg/100 g</td>
</tr>
<tr>
<td>Calcium</td>
<td>291</td>
<td>mg/100 g</td>
</tr>
<tr>
<td>Magnesium</td>
<td>251</td>
<td>mg/100 g</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>9456</td>
<td>mg/100 g</td>
</tr>
<tr>
<td>Selenium</td>
<td>25.71</td>
<td>mg/100 g</td>
</tr>
<tr>
<td>Bioactive Compounds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quercetin</td>
<td>114</td>
<td>mg/100 g</td>
</tr>
<tr>
<td>β-carotene</td>
<td>2.76</td>
<td>mg/100 g</td>
</tr>
</tbody>
</table>

Table 2: Structure of Chemical Compounds

<table>
<thead>
<tr>
<th>Serial no.</th>
<th>Name of compounds</th>
<th>Chemical structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,2,3-Cyclopentanetriol</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>L-galactose, 6-deoxy</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>n-Hexadecanoic acid</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Tetradecanoic acid</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>cis-Vaccenic acid</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Octadecanoic acid</td>
<td></td>
</tr>
</tbody>
</table>
1.4 PHARMACOLOGICAL ACTIONS OF MORINGA OLEIFERA PLANT ANTIMICROBIAL AND ANTIOXIDANT PROPERTY

Some of gram positive and gram negative bacteria such as E.coli, S.aureus, K.pneumoniae, Paeruginosa and B.Subtilis were tested with the extracts of M.olifera. It reduced bacterial growth exhibiting its antibacterial effect. Antifungal activity were also observed as it shows reduction in colony diameter in plates positioned with distillate as compared to control used plates. Stem bark of Moringa oleifera is extracted with chloroform, ether, ethyl acetate and carbon tetrachloride treated with eleven pathogenic microorganism. It shows that Ethyl acetate and chloroform extract inhibited the microbial growth hence exhibited the antibacterial and antifungal effect. The petroleum and ethanolic extract of Moringa oleifera leaves controlled the microbial growth of Aspergillus Niger and Candida albicans, due to presence of alkaloids. The extracts from roots, leaves and pod coats of Moringa oleifera produced inhibition of plant pathogenic fungi. It can be used as eco-friendly fungicide. Food spoilage leads to several digestive problems, Spoilage may due to microbial growth. The Moringa oleifera dried powder extract can inhibit the growth of some microbial growth and can act as natural preservative. Moringa oleifera and Momordica charantia extracts were inhibited the growth of bacteria. Methanolic extract produced significant antibacterial effect comparing to aqueous extract, this is due to presence of Tannins, flavonoids and terpenoids: Moringa pods are rich phenolic compounds which is confirmed by phytochemical screening of the hydroalcoholic extract. Moringa pods contains important bioactive compounds including isothiocyanates and thiocarbamates. These compounds produce the ROS, Chelate metal ion and antioxidant activity. Durmstick has the major chemical compounds such as beta carotene, vitamin A and C which helps to serve as a potent antioxidant. Alcoholic extract possess high amount of tannin, phenolic compounds and flavonoids. The poly phenolic constituents of this plant is used for medicinal purpose. Plant parts such as seeds, leaves, bark, root, exhibit antioxidant effect. This is may due to presence of some phenolic compound, which supports human diet. Ethanolic and saline extract of Moringa oleifera exhibit effective antioxidant effect. The ethanolic extract is comparatively more effective than saline extract of Moringa oleifera.

1.5 TREATMENT IN GASTROINTESTINAL TRACT

Many researches have been carried out on antulcer effect in M.olifera using two animal model procedure. The aqueous extract of leaves was tested for antulcer activity at the dose level of 200 mg and 400mg in pyloric ligation and ibuprofen induced gastric ulcer models. Ulceration is mainly due to rupture of mucous layer in GIT, thus exposing it to pepsin and hydrochloric acid. The ulceration was assessed by means of reduction in ulcer index compared to control groups of dose from lower level to higher level. Presence of tannins which has an astringent may have precipitated microprotein on the site of ulcer. Due to presence of flavonoids, it produce protective action from ulcer development. The methanol leaf extract of the plant has found to produce the potential antiulcerogenic agent and hepatoprotective effect. Ethanol extract of Moringa Oleifera showed potent spasmodic activity and it is used for its gastrointestinal motility. Isothiocyanate glycosides was found to be potent. Leaf and fruit of Moringa Oleifera can heal the peptic ulcer. Rutin a flavonoid which can effectively control the peptic ulcer lesion. Seed extract can significantly reduce the canal motility and effective in castor oil induced diarrhoea in male rats.

1.6 ANALGESIC

Various fractional extractions of solvents such as petroleum ether, ethyl acetate, ether-butanol undergone a hotplate and tail immersion method. Among all organic solvent extract alcoholic extract has shown potent analgesic activity. Comparing their effect to aspirin, shown that seeds of Moringa oleifera has potent analgesic activity and it is equivalent to that of standard drug aspirin. The aqueous extract of the root of Moringa oleifera was performed for the aqueous extract of root in rats with weight ranges between from 120-160 g was investigated. Ethanolic extract treated is also produced the analgesic effect. At a dose of 750 mg/kg, the M.oleifera treatment significantly inhibited the development of edemas. M.oleifera aqueous extract tested in both acetic acid writhing test (chemical), formalin induced test and hot plate method (thermal) method, it produces dose dependent action. It produced effective control of pain, and act peripheral, centrally mediated antinociceptive activity, further it could produce the anti-inflammation activity. The comparative study of analgesic activity of M.oleifera extract and lornoxicam was made, it result shown that M.oleifera extract produce good antinociceptive property but it is not as much as effective comparing to lornoxicam.

1.7 CARDIOVASCULAR ACTIVITIES

Moringa leaf evaluated for cardio protective action on hydroalcoholic extract. Chronic treatment with M.oleifera demonstrates mitigating effect leads to antioxidant and myocardial preservative property. The dried powder of fresh bark Moringa olifera extracted with aqueous is treated with isoproterenol cardioactive induced rat. It showed considerable decrease in the level triglycerides, HDL and exhibit antioxidant property, hence proving effective cardioprotective activity. Male albino wister rats was used for aqueous and alcoholic extract of M.oleifera rootwood on calcium oxalate in male wister albino rats. Ethylene glycol on administration showed increased urea and as well as increased renal excretion of calcium and phosphate. Administration of alcoholic and aqueous extract showed reduction in urinary oxalate. Hence root wood can be administrated for antiurolithic activity. The Moringa powder was also potent as anti-AIDS agent. It also has polysaccharide isolated from hot aqueous extract of mature pods. Lower dose of plant extract are found to be more potent than higher dose. This could be due to the presence of toxicant such as isothiocyanate and glycose cyanides that may pose stress at high concentration and hence reducing the antioxidant potential of Moringa oleifera. Leaf extract of M.olifera also has antihypertensive distinguishing activity using in-vivo method in animal’s heart. This was found to be thiocarbamate and isothiacyanate glycosides.
Micronutrient ranges are given like follows: Phosphor (P): a solution (300 ppm) of potassium hydrogen phosphate (K$_2$HPO$_4$) permitted to achieve a range of concentration varying between 3 and 15 ppm. Potassium (K) and Sodium (Na): a standard solution of Sodium-potassium (100 ppm) permitted to prepare a range concentration between 0 and 10 ppm. Magnesium (Mg) and Calcium (Ca): standards solutions of Magnesium (1000 ppm) and Calcium (1000 ppm) permitted to prepare concentrations ranging between 5 and 30 ppm for the Calcium, 0.5 and Magnesium. Zinc (Zn) and Iron (Fe) along with ferrous sulphate can be considered as the drug of choice for treating anaemia as shown in Fig 2. Total iron content in Moringa extract was found to be 14.67 mg/100 g extract. The extract contained vitamin C was 759.05 mg/100 g with HPLC analysis levels of nutrients in the capsules used in the research was calculated based on the amount of iron substance in 100 g of extract. If one capsule with 700 mg of the extract the contained iron levels are 0.103 mg of iron/capsule and vitamin C 5.313 mg/capsule and protein levels of 39.043 mg in one capsule.

2. CONCLUSION

The key objective of this review was to unfold and explore the pharmacological and medicinal values of MO: preclinical studies revealed that this plant possesses analgesic, anti-inflammatory, antipyretic, anticancer, antioxidant, nootropic, hepatoprotective, gastroprotective, anti-ulcer, cardiovascular, anti-obesity, antiepileptic, antiasthmatic, antidiabetic, anti-uratiuric, diuretic, local anaesthetic, anti-allergic, anehlminitic, wound healing, antimicrobial, immune modulatory, and antidiarrheal effects. These activities may be attributed to phytoconstituents present in its root, stem, bark, leaf, flower, pod, and seeds. MO offers immense value, which can form the basis of drug supplementation, and should be used for the promotion of public health. It may also be considered for the treatment of anaemic disorders.

3. AUTHOR CONTRIBUTION STATEMENT

Mrs. S. Gejalakshmi conceptualized and gathered the data with regard to this work. Dr. Harikrishnan N analysed the data and necessary inputs were given towards designing of manuscript. All authors discussed the methodology and results leading to final manuscript.

4. CONFLICT OF INTEREST

Conflict of interest declared none.

5. REFERENCE

8. Saini RK, Shetty NP, Prakash M, Giridhar P. Effect of dehydration methods on retention of carotenoids,

doi: 10.1002/ptr.4591, PMID 22294387.
doi: 10.1080/13880200701212924.