SYNTHESIS OF NOVEL BIS PYRAZOLONES

*L.K.RAVINDRANATH, E.V.SURESH KUMAR, K.SRIKANTH Y.N.SPOORTHI, AND P.PHEBE
S.K.University Anantapur, Andrapradesh, India

ABSTRACT

The mixture of acetamide 7(a-f) and with in ethanol, and ethylacetoacetate were added and the mixture was refluxed for 10-12 hours in presence of catalytical amount glacial acetic acid to get the compounds (8a-f) in good yields. The structures of these newly synthesized compounds were characterized by $^1$H-NMR, Mass, IR and elemental analysis.

Key words: Pyrazolones, Bis pyrazolones, Ethylacetoacetate

INTRODUCTION

Heterocyclic compounds represents an important class of biologically active molecules specifically, those containing the pyrazolone nucleus have been shown to posses high biological activities such as tranquillizing, muscle relaxant, psycho analeptic, anticonvulsant, antihypertensive, antidepressant activities. The derivatives of pyrazolone are important class of antipyretic and analgesic Compounds

Some substituted pyrazolines and their derivatives are used as antitumor, anti bacterial, antifungal, antiviral, anti parasitic, anti-tubercular and insecticidal agents
EXPERIMENTAL

All the chemicals were used as received without further purification. Melting points were determined in open capillary tubes in Buchi 530 circulating oil apparatus and are not corrected. Reactions monitored by thin layer chromatography (TLC) on silica gel plates (60 F254), visualizing with ultraviolet light or iodine spray. $^1$H NMR spectra were determined in DMSO-d$_6$ solution on JOEL AL300 spectrometers. $^{13}$C NMR spectra were determined in DMSO-d$_6$ solution on AMX400 spectrometers. Chemical shifts are relative to tetramethylsilane as internal standard and expressed in ppm.

SYNTHESIS OF COMPOUNDS

Ethyl 4,4,4-trichloro-3-oxo-2-(2-phenyl hydrazono) butanoate (2) was prepared by the procedure described by H.M.W.Alborsky, M.E.Baum$^{13}$

4-(4-substituted aryl hydrazono)-5-trichloromethyl-2, 4-dihydro-pyrazol-3-one (3)

A mixture of (2) and hydrazine hydrate and Dimethyl formamide (10 drops) was subjected to microwave irradiation at 150W intermittently at 30 seconds intervals for 2 minutes. After complete conversion as indicated by TLC, the reaction mixture was cooled and treated with cold water. The

<table>
<thead>
<tr>
<th>Comp</th>
<th>8a</th>
<th>8b</th>
<th>8c</th>
<th>8d</th>
<th>8e</th>
<th>8f</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>H</td>
<td>4-CH$_3$</td>
<td>4-OCH$_3$</td>
<td>4-OC$_2$H$_5$</td>
<td>4-Cl</td>
<td>4-Br</td>
</tr>
</tbody>
</table>
precipitate 3-methyl 4-(4'-substituted aryl hydrazono) pyrazoline-5-one (3) was filtered and recrystallized from ethanol. The yield is 85%.

2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl)acetic acid (4)

A mixture of (3), 2-chloroacetic acid, anhydrous K$_2$CO$_3$ and DMF was stirred at room temperature for 8 hours. The reaction mixture was diluted with ice cold water. The separated solid was identified as 2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl)acetic acid (4). Yield 71%, m.p.: 181$^\circ$C; $^1$H-NMR (400 MHz,DMSO-d$_6$,$\delta$ ppm): 3.65(s,2H,N CH$_2$), 11.44-11.94 (s, H, Ar-NH), 6.81 -7.88 (m, 5H, for C$_6$H$_5$ phenyl group); $^{13}$C-NMR (400 MHz,DMSO-d$_6$,$\delta$ ppm): 64.3 (CH$_2$), 18.5 (CH$_3$), 51.2 (CH), 113-145 ( Ar-C ), 133 ( NH-N=C ), 154 ( pyrazole C=O), 92 ( CCl$_3$ - C), 144 ( CCl$_3$ - C), 172 ( C=ONHN-); IR (KBr): $\tilde{\nu}$ = 3080,1696,1615,1515 cm$^{-1}$ and these are due to NH, cyclic carbonyl in five membered heterocyclic ring exo > C = N, acid chloride respectively Anal. Calcd. for C$_{12}$H$_7$Cl$_4$N$_2$O$_3$ (382.03); C, 37.73; H, 2.11; N, 14.67; found (%); C: 38.23, H: 3.13, N: 22.31.

Ethyl2-(2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl)acetamido) propanoate (6)

A solution of acid chloride (5a-f) (2.47 mol) in dichloromethane (30 mL) were added L-Alanine ethyl ester hydrochloride (735 mg, 2.5 mol) and Di isopropyl ethylamine (1.3 mL, 7.5 mol) at 0°C. Then, the solution warmed to room temperature and was stirred overnight. Then, it was diluted with water (50 mL) and dichloromethane (50 mL). The two layers were separated and the aqueous layer was extracted with dichloromethane (50 mL). The combined organic layer was washed with brine solution and dried over anhydrous magnesium sulfate. Filtration of the drying agent and concentration of the solvent gave the crude residue which was purified by using column chromatography to give ethyl 2-(2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl) acetamido) propanoate (6a-f) (1.5 g) as a colorless oil. Yield 65%, m.p.: 184$^\circ$C; $^1$H-NMR (400 MHz,DMSO-d$_6$,$\delta$ ppm) : 1.28 (t,3H, CH$_3$), 2.15(d,3H, CH$_3$ of CHCH$_2$), 3.51(s,2H, NCH$_2$), 2.47(q,2H OCH$_2$ of CH$_2$CH$_3$ ) 5.25(q,1H,CH of CHCH$_3$), 10.72 (s, H, CONH), 12.58 (s, H, Ar-NH), 6.82 -7.94 (m, 5H, for C$_6$H$_5$ of phenyl group); $^{13}$C-NMR (400 MHz,DMSO-d$_6$,$\delta$ ppm): 64.3 (CH$_2$), 18.1 (CH$_3$), 51.2 (CH), 113-144( Ar-C ), 133 ( NH-N=C ), 154 (pyrazole C=O), 92 ( CCl$_3$ - C), 146 ( CCl$_3$ - C), 178 (C=ONHN-), 50(CHC=O, 17.6 (CH$_2$CH$_3$), 178 (C=ONHN-); IR (KBr): $\tilde{\nu}$ = 3164, 3120, 1592, 1467, 1380, 1280 cm$^{-1}$ and these are due to NH, CO-NH exo > C = N, cyclic carbonyl in five membered heterocyclic ring, carbonyl group, ester carbonyl group respectively ; Anal. Calcd. for C$_{12}$H$_{18}$Cl$_3$N$_2$O$_4$ (462.71); C, 44.13; H, 3.92; N, 15.14; found (%); C: 44.20, H: 4.21, N: 22.31.

2-(5-oxo-4-(2-phenylhydrazono)-4,5-dihydro-1H-pyrazol-1-yl)acetyl chloride (5)

To a solution of 2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl)acetic acid (4). (900 mg) in toluene (30 mL) was added Thionyl chloride (0.90 mL) at room temperature and the excess Thionyl chloride and toluene was removed under vacuum. The residue was dissolved one time in toluene and removed again under vacuum to afford 2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl)acetyl chloride (5). Yield 58%, m.p.: 173$^\circ$C; $^1$H-NMR (400 MHz,DMSO-d$_6$,$\delta$ ppm): 3.81(s,2H,N CH$_2$), 10.70 (s, H, Ar-NH), 6.78 -7.88 (m, 5H, for C$_6$H$_5$ phenyl group) ; $^{13}$C-NMR (400 MHz,DMSO-d$_6$,$\delta$ ppm): 64.1 (CH$_2$), 18.5 (CH$_3$),51.2(CH) 113-145 ( Ar-C ), 133 ( NH-N=C ), 154 ( pyrazole C=O), 92 ( CCl$_3$ - C), 144 ( CCl$_3$ - C), 172 ( C=ONHN-); IR (KBr): $\tilde{\nu}$ = 3180,1696,1617,1651 cm$^{-1}$ and these are due to NH, cyclic carbonyl in five membered heterocyclic ring exo > C = N, acid chloride respectively Anal. Calcd. for C$_{12}$H$_7$Cl$_4$N$_2$O$_3$ (382.03); C, 37.73; H, 2.11; N, 14.67; found (%); C: 38.23, H: 3.13, N: 22.31.
(E)-N-(1-(hydrazinylamino)-1-oxopropan-2-yl)-2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl)acetamide (7)

A solution of (6) (0.01M) and hydrazine hydrate (0.015M) in ethanol 20 mL was refluxed for 5 hours. The reaction mixture was cooled and poured on to ice cold water with stirring. The separated solid was washed, filtered, washed with water and recrystallized from ethanol to afford (7) Yield 64%, m.p. 132°C; 1H-NMR (400 MHz,DMSO-d_6 ppm): 7.98 - 8.03 (m, 2H), 9.72 (s, 1H, CONH), 11.16 (s, 1H, NH), 10.75 (s, 1H, Ar-NH), 6.82 - 7.98 (m, 5H, for C_6H_5 of phenyl group); 13C-NMR (400 MHz,DMSO-d_6 ppm): 145.76 (CH =O), 154.50, 153.89, 139.98, 134.81, 131.07, 125.97, 125.52 (CH), 121.84 (C=C), 118.42 (CH), 114.97 (CH), 108.53 (CH), 62.10 (NCH_2), 18.43 (CH_3), 15.90 (CH_3), 159.92 (C=N) 173.47 (CH=O) 53.59 (CH_2) ; IR (KBr): υ = 3228, 3132, 1608, 1792, 1760, 1730, and 1622 these are due to –CO–NH, Ar-NH exo > C = N, cyclic carbonyl in five membered hetero cyclic ring respectively, Anal. Calcd. for C_{13}H_{16}Cl_3N_2O_3: C 44.84, H: 3.59, N: 21.88. Found (%): C: 40.17, H: 3.62, N: 21.88.

N-(1-(3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)-1-oxopropan-2-yl)-2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl)acetamide 8b

Yield 62%, m.p. 153°C; 1H-NMR (400 MHz,DMSO-d_6 ppm): 3.1 (s, 3H, Ar-CH_3), 1.46-1.51 (d, 3H, CH_3), 2.16 (s, 2H, CH_2CH), 3.15 (s, 2H, NCH_2CO), 4.38 (s, 2H, CH,CH) 9.84 (s, 1H, CONH), 12.53 (s, 1H, Ar-NH), 6.97 - 7.82 (m, 4H, for C_6H_5 of phenyl group); 13C-NMR (400 MHz,DMSO-d_6 ppm): 21.3 (Ar-CH_3), 66.2 (CH_2), 117-144.3 (Ar-C), 135 (NH-N=C), 155 (pyrazole C=O), 163 (NH-N=C), 93 (CCl_3), 147 (CCl_3 - C), 169 (CH_2C=O), 50.1 (CH), 18.1 (CHCCl), 166.2 (C=O) 16.2 (CH_2), 158.8 (C=N) 175.4 (CHC=O) 53.8 (CH_2) ; IR (KBr): υ = 3221, 3135, 1603, 1790, 1766, 1731, and 1620 these are due to –CO–NH, Ar-NH exo > C = N, cyclic carbonyl in five membered hetero cyclic ring respectively, Anal. Calcd. for C_{26}H_{29}Cl_3N_2O_5: 527.06; C: 45.43, H: 3.81, N: 18.54, found (%); C: 45.00, H: 3.58 N: 18.51.

N-(1-(3-amino-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)-1-oxopropan-2-yl)-2-(5-oxo-4-(2-phenylhydrazono)-3-(trichloromethyl)-4,5-dihydro-1H-pyrazol-1-yl)acetamide 8c

Yield 68%, m.p. 154°C; 1H-NMR (400 MHz,DMSO-d_6 ppm): 3.24 (s, 3H, OCH_3), 1.46-1.51 (d, 3H, CH_3), 2.19 (s, 2H, CH_2CH), 3.12 (s, 2H, NCH_2CO), 4.37 (s, 2H, NCH_3), 4.79 (1H, CH,CH) 9.85 (s, 1H, CONH), 12.55 (s, H, Ar-NH), 6.98 - 7.81 (m, 4H, for C_6H_5 of phenyl group); 13C-NMR (400 MHz,DMSO-d_6 ppm): 155.08 (C=O), 145.00, 144.01, 139.90, 135.00, 131.03, 121.88, 118.38, 114.97, 108.51 (CH), 62.03 (NCH_2), 18.40 (CH_3), 15.89 (CH_3), 159.93 (C=N) 173.47 (CH=O) 53.57 (CH_2) ; IR (KBr): υ = 3222, 3135, 1603, 1790, 1766, 1731, and 1620 these are due to –CO–NH, Ar-NH exo > C = N, cyclic carbonyl in five membered hetero cyclic ring respectively, Anal. Calcd. for C_{26}H_{29}Cl_3N_2O_5: 527.06; C: 45.43, H: 3.81, N: 18.54; found (%); C: 45.00, H: 3.58 N: 18.51.

Review Article

ISSN 2250-0480

MHZ,DMSO-d$_6$ δ ppm): 56.4 (O-CH$_3$), 69 (CH$_3$), 118-145.2 (Ar-C), 137 (NH-N-C), 156 (pyrazole C=O), 165 (NH-N-C), 94 (CCl$_3$), 134 (CCl$_3$ - C), 169 (CH$_3$C=O), 51.2 (CH), 19.2 (CHCH$_3$), 168.4 (C=O) 16.6 (CH$_3$), 159.2 (C=N) 175.2 (C=O) 54.2 (CH$_2$); IR (KBr): $\nu$ = 3224,3134,1605,1793,1763,1734,1626 these are due to –CO–NH, Ar-NH exo > C = N, cyclic carbonyl in five membered heterocyclic ring respectively, Anal. Calcd. for C$_{20}$H$_{17}$Cl$_3$N$_3$O$_5$ (543.06); C: 44.08, H: 3.60, N: 17.31.

Yield 74%, m.p. 164°C; $^1$H-NMR (400 MHz,DMSO-d$_6$ δ ppm): 1.32 (t, 3H, CH$_3$), 3.44 (q, 2H, O – CH$_2$), 1.51-1.52 (d, 3H, CH$_3$), 2.16 (s,2H,CH$_2$CH$_3$), 3.15 (s,2H, NCH$_2$CO), 4.37 (s, H, NCH$_2$N), 4.76 (q,1H CH$_3$CH) 9.87 (s, H, CONH), 12.57 (s, H, Ar-NH), 6.98 -7.83 (m, 4H, for C$_7$H$_5$N of phenyl group); $^{13}$C-NMR (400 MHz,DMSO-d$_6$ δ ppm): 64.8 (CH$_3$), 16 (CH$_3$),69 (CH$_3$), 118-145.2 (Ar-C), 137 (NH-N-C), 156 (pyrazole C=O), 169 (NH-N-C), 94 (CCl$_3$), 134 (CCl$_3$ - C), 167.4 (CH$_2$C=O), 51.2 (CH), 19.2 (CHCH$_3$), 168.4 (C=O) 16.6 (CH$_3$), 159.2 (C=N) 175.3 (CH=O) 54.2 (CH$_2$); IR (KBr): $\nu$ = 3226,3131,1601,1795,1762,1736, and 1624 these are due to –CO–NH, Ar-NH exo > C = N, cyclic carbonyl in five membered heterocyclic ring respectively, Anal. Calcd. for C$_{21}$H$_{17}$Cl$_3$N$_3$O$_5$ (557.07); C: 45.14, H: 3.97, N: 17.54 found (%); C: 45.08, H: 3.60; N: 17.31.

REFERENCES


